These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 17878431)

  • 1. Scaling of dynamics in the earliest stages of walking.
    Holt KG; Saltzman E; Ho CL; Ulrich BD
    Phys Ther; 2007 Nov; 87(11):1458-67. PubMed ID: 17878431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leg stiffness increases with speed to modulate gait frequency and propulsion energy.
    Kim S; Park S
    J Biomech; 2011 Apr; 44(7):1253-8. PubMed ID: 21396646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in lower limb co-contraction and stiffness by toddlers with Down syndrome and toddlers with typical development during the acquisition of independent gait.
    Gontijo AP; Mancini MC; Silva PL; Chagas PS; Sampaio RF; Luz RE; Fonseca ST
    Hum Mov Sci; 2008 Aug; 27(4):610-21. PubMed ID: 18649965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of pendulum mechanism and kinematic coordination from the first unsupported steps in toddlers.
    Ivanenko YP; Dominici N; Cappellini G; Dan B; Cheron G; Lacquaniti F
    J Exp Biol; 2004 Oct; 207(Pt 21):3797-810. PubMed ID: 15371487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromyographic characteristics at the onset of independent walking in infancy.
    Okamoto T; Okamoto K
    Electromyogr Clin Neurophysiol; 2001; 41(1):33-41. PubMed ID: 11234565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust and efficient walking with spring-like legs.
    Rummel J; Blum Y; Seyfarth A
    Bioinspir Biomim; 2010 Dec; 5(4):046004. PubMed ID: 21079285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional electrical stimulation changes dynamic resources in children with spastic cerebral palsy.
    Ho CL; Holt KG; Saltzman E; Wagenaar RC
    Phys Ther; 2006 Jul; 86(7):987-1000. PubMed ID: 16813478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of early walking patterns from plantar pressure distribution measurements. First year results of 42 children.
    Bertsch C; Unger H; Winkelmann W; Rosenbaum D
    Gait Posture; 2004 Jun; 19(3):235-42. PubMed ID: 15125912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data.
    Thelen DG; Anderson FC
    J Biomech; 2006; 39(6):1107-15. PubMed ID: 16023125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle length and lengthening velocity in voluntary crouch gait.
    van der Krogt MM; Doorenbosch CA; Harlaar J
    Gait Posture; 2007 Oct; 26(4):532-8. PubMed ID: 17208000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanics of ambulation with standard and spring-loaded crutches.
    Segura A; Piazza SJ
    Arch Phys Med Rehabil; 2007 Sep; 88(9):1159-63. PubMed ID: 17826462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic motion planning of 3D human locomotion using gradient-based optimization.
    Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG
    J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation and characterization of rat bipedal walking models established by a training program.
    Wada N; Toba Y; Iwamoto W; Goto M; Miyata H; Mori F; Morita F
    Brain Res; 2008 Dec; 1243():70-7. PubMed ID: 18835381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint kinetics during Tai Chi gait and normal walking gait in young and elderly Tai Chi Chuan practitioners.
    Wu G; Millon D
    Clin Biomech (Bristol); 2008 Jul; 23(6):787-95. PubMed ID: 18342415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic analysis of load carriage biomechanics during level walking.
    Ren L; Jones RK; Howard D
    J Biomech; 2005 Apr; 38(4):853-63. PubMed ID: 15713307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in axial stiffness of the trunk as a function of walking speed.
    Kubo M; Holt KG; Saltzman E; Wagenaar RC
    J Biomech; 2006; 39(4):750-7. PubMed ID: 16439245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking.
    Stoquart G; Detrembleur C; Lejeune T
    Neurophysiol Clin; 2008 Apr; 38(2):105-16. PubMed ID: 18423331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Walking speed modifies spasticity effects in gastrocnemius and soleus in cerebral palsy gait.
    van der Krogt MM; Doorenbosch CA; Becher JG; Harlaar J
    Clin Biomech (Bristol); 2009 Jun; 24(5):422-8. PubMed ID: 19349103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective.
    Kuo AD
    Hum Mov Sci; 2007 Aug; 26(4):617-56. PubMed ID: 17617481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.