BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 17878531)

  • 1. Microarray analysis of survival pathways in human PC-3 prostate cancer cells.
    Tenta R; Katopodis H; Chatziioannou A; Pilalis E; Calvo E; Luu-The V; Labrie F; Kolisis F; Koutsilieris M
    Cancer Genomics Proteomics; 2007; 4(4):309-18. PubMed ID: 17878531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone microenvironment-related growth factors, zoledronic acid and dexamethasone differentially modulate PTHrP expression in PC-3 prostate cancer cells.
    Tenta R; Sourla A; Lembessis P; Luu-The V; Koutsilieris M
    Horm Metab Res; 2005 Oct; 37(10):593-601. PubMed ID: 16278781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts.
    Fizazi K; Yang J; Peleg S; Sikes CR; Kreimann EL; Daliani D; Olive M; Raymond KA; Janus TJ; Logothetis CJ; Karsenty G; Navone NM
    Clin Cancer Res; 2003 Jul; 9(7):2587-97. PubMed ID: 12855635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential expression of IGF-1Ec (MGF) transcript in cancerous tissues of human prostate: evidence for a novel and autonomous growth factor activity of MGF E peptide in human prostate cancer cells.
    Armakolas A; Philippou A; Panteleakou Z; Nezos A; Sourla A; Petraki C; Koutsilieris M
    Prostate; 2010 Aug; 70(11):1233-42. PubMed ID: 20564425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of TGF-beta-regulated interleukin-8 expression in human prostate cancer cells.
    Lu S; Dong Z
    Prostate; 2006 Jun; 66(9):996-1004. PubMed ID: 16541418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential metastasis-associated gene analysis of prostate carcinoma cells derived from primary tumor and spontaneous lymphatic metastasis in nude mice with orthotopic implantation of PC-3M cells.
    Chu JH; Sun ZY; Meng XL; Wu JH; He GL; Liu GM; Jiang XR
    Cancer Lett; 2006 Feb; 233(1):79-88. PubMed ID: 15885894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MG-63 osteoblast-like cells enhance the osteoprotegerin expression of PC-3 prostate cancer cells.
    Katopodis H; Philippou A; Tenta R; Doillon C; Papachroni KK; Papavassiliou AG; Koutsilieris M
    Anticancer Res; 2009 Oct; 29(10):4013-8. PubMed ID: 19846944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of zinc on regulation of insulin-like growth factor signaling in human androgen-independent prostate cancer cells.
    Banudevi S; Senthilkumar K; Sharmila G; Arunkumar R; Vijayababu MR; Arunakaran J
    Clin Chim Acta; 2010 Feb; 411(3-4):172-8. PubMed ID: 19913001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways.
    Park JI; Lee MG; Cho K; Park BJ; Chae KS; Byun DS; Ryu BK; Park YK; Chi SG
    Oncogene; 2003 Jul; 22(28):4314-32. PubMed ID: 12853969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microarray analysis reveals potential target genes of NF-kappaB2/p52 in LNCaP prostate cancer cells.
    Nadiminty N; Dutt S; Tepper C; Gao AC
    Prostate; 2010 Feb; 70(3):276-87. PubMed ID: 19827050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transforming growth factor-beta1 modulates tumor-stromal cell interactions of prostate cancer through insulin-like growth factor-I.
    Kawada M; Inoue H; Arakawa M; Ikeda D
    Anticancer Res; 2008; 28(2A):721-30. PubMed ID: 18507013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blockade of transforming growth factor-beta signaling suppresses progression of androgen-independent human prostate cancer in nude mice.
    Zhang F; Lee J; Lu S; Pettaway CA; Dong Z
    Clin Cancer Res; 2005 Jun; 11(12):4512-20. PubMed ID: 15958637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of differentially expressed genes in LNCaP prostate cancer progression model.
    Xie BX; Zhang H; Wang J; Pang B; Wu RQ; Qian XL; Yu L; Li SH; Shi QG; Huang CF; Zhou JG
    J Androl; 2011; 32(2):170-82. PubMed ID: 20864652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy.
    Haram KM; Peltier HJ; Lu B; Bhasin M; Otu HH; Choy B; Regan M; Libermann TA; Latham GJ; Sanda MG; Arredouani MS
    Prostate; 2008 Oct; 68(14):1517-30. PubMed ID: 18668517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array.
    Dong Y; Zhang H; Hawthorn L; Ganther HE; Ip C
    Cancer Res; 2003 Jan; 63(1):52-9. PubMed ID: 12517777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prostate carcinoma cells that have resided in bone have an upregulated IGF-I axis.
    Rubin J; Chung LW; Fan X; Zhu L; Murphy TC; Nanes MS; Rosen CJ
    Prostate; 2004 Jan; 58(1):41-9. PubMed ID: 14673951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and survival mechanisms associated with perineural invasion in prostate cancer.
    Ayala GE; Dai H; Ittmann M; Li R; Powell M; Frolov A; Wheeler TM; Thompson TC; Rowley D
    Cancer Res; 2004 Sep; 64(17):6082-90. PubMed ID: 15342391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular signatures of soy-derived phytochemicals in androgen-responsive prostate cancer cells: a comparison study using DNA microarray.
    Takahashi Y; Lavigne JA; Hursting SD; Chandramouli GV; Perkins SN; Kim YS; Wang TT
    Mol Carcinog; 2006 Dec; 45(12):943-56. PubMed ID: 16865672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer.
    Zerbini LF; Wang Y; Cho JY; Libermann TA
    Cancer Res; 2003 May; 63(9):2206-15. PubMed ID: 12727841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inhibitory effects of gossypol on human prostate cancer cells-PC3 are associated with transforming growth factor beta1 (TGFbeta1) signal transduction pathway.
    Jiang J; Sugimoto Y; Liu S; Chang HL; Park KY; Kulp SK; Lin YC
    Anticancer Res; 2004; 24(1):91-100. PubMed ID: 15015581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.