These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 17878550)
1. Sunlight inactivation of Campylobacter jejuni and Salmonella enterica, compared with Escherichia coli, in seawater and river water. Sinton L; Hall C; Braithwaite R J Water Health; 2007 Sep; 5(3):357-65. PubMed ID: 17878550 [TBL] [Abstract][Full Text] [Related]
2. Sunlight inactivation of Escherichia coli in waste stabilization microcosms in a sahelian region (Ouagadougou, Burkina Faso). Maïga Y; Denyigba K; Wethe J; Ouattara AS J Photochem Photobiol B; 2009 Feb; 94(2):113-9. PubMed ID: 19084427 [TBL] [Abstract][Full Text] [Related]
3. Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters. Sinton LW; Hall CH; Lynch PA; Davies-Colley RJ Appl Environ Microbiol; 2002 Mar; 68(3):1122-31. PubMed ID: 11872459 [TBL] [Abstract][Full Text] [Related]
4. Treatment of raw poultry with nonthermal dielectric barrier discharge plasma to reduce Campylobacter jejuni and Salmonella enterica. Dirks BP; Dobrynin D; Fridman G; Mukhin Y; Fridman A; Quinlan JJ J Food Prot; 2012 Jan; 75(1):22-8. PubMed ID: 22221351 [TBL] [Abstract][Full Text] [Related]
5. Solar inactivation of four Salmonella serovars in fresh and marine waters. Boehm AB; Soetjipto C; Wang D J Water Health; 2012 Dec; 10(4):504-10. PubMed ID: 23165707 [TBL] [Abstract][Full Text] [Related]
6. Sunlight inactivation of human polymerase chain reaction markers and cultured fecal indicators in river and saline waters. Gilpin BJ; Devane M; Robson B; Nourozi F; Scholes P; Lin S; Wood DR; Sinton LW Water Environ Res; 2013 Aug; 85(8):743-50. PubMed ID: 24003600 [TBL] [Abstract][Full Text] [Related]
7. Survival of Campylobacter jejuni and Escherichia coli in groundwater during prolonged starvation at low temperatures. Cook KL; Bolster CH J Appl Microbiol; 2007 Sep; 103(3):573-83. PubMed ID: 17714390 [TBL] [Abstract][Full Text] [Related]
8. Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella Typhimurium and Vibrio cholerae. Berney M; Weilenmann HU; Simonetti A; Egli T J Appl Microbiol; 2006 Oct; 101(4):828-36. PubMed ID: 16968294 [TBL] [Abstract][Full Text] [Related]
9. Solar radiation disinfection of drinking water at temperate latitudes: inactivation rates for an optimised reactor configuration. Davies CM; Roser DJ; Feitz AJ; Ashbolt NJ Water Res; 2009 Feb; 43(3):643-52. PubMed ID: 19041999 [TBL] [Abstract][Full Text] [Related]
10. Solar disinfection of drinking water (SODIS): an investigation of the effect of UV-A dose on inactivation efficiency. Ubomba-Jaswa E; Navntoft C; Polo-López MI; Fernandez-Ibáñez P; McGuigan KG Photochem Photobiol Sci; 2009 May; 8(5):587-95. PubMed ID: 19424529 [TBL] [Abstract][Full Text] [Related]
11. Sunlight inactivation of fecal bacteriophages and bacteria in sewage-polluted seawater. Sinton LW; Finlay RK; Lynch PA Appl Environ Microbiol; 1999 Aug; 65(8):3605-13. PubMed ID: 10427056 [TBL] [Abstract][Full Text] [Related]
12. Relative survival of Escherichia coli and Salmonella typhimurium in a tropical estuary. Chandran A; Mohamed Hatha AA Water Res; 2005 Apr; 39(7):1397-403. PubMed ID: 15862340 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous E. coli inactivation and NOM degradation in river water via photo-Fenton process at natural pH in solar CPC reactor. A new way for enhancing solar disinfection of natural water. Moncayo-Lasso A; Sanabria J; Pulgarin C; Benítez N Chemosphere; 2009 Sep; 77(2):296-300. PubMed ID: 19716153 [TBL] [Abstract][Full Text] [Related]
14. Effect of environmental parameters on the inactivation of the waterborne pathogen Campylobacter in a Mediterranean river. Rodríguez S; Araujo R J Water Health; 2012 Mar; 10(1):100-7. PubMed ID: 22361705 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Escherichia coli and Campylobacter jejuni transport in saturated porous media. Bolster CH; Walker SL; Cook KL J Environ Qual; 2006; 35(4):1018-25. PubMed ID: 16738386 [TBL] [Abstract][Full Text] [Related]
16. Sunlight mediated inactivation mechanisms of Enterococcus faecalis and Escherichia coli in clear water versus waste stabilization pond water. Kadir K; Nelson KL Water Res; 2014 Mar; 50():307-17. PubMed ID: 24188579 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of enterococci and fecal coliforms from sewage and meatworks effluents in seawater chambers. Sinton LW; Davies-Colley RJ; Bell RG Appl Environ Microbiol; 1994 Jun; 60(6):2040-8. PubMed ID: 8031097 [TBL] [Abstract][Full Text] [Related]
18. Sunlight, season, snowmelt, storm, and source affect E. coli populations in an artificially ponded stream. Whitman RL; Przybyla-Kelly K; Shively DA; Nevers MB; Byappanahalli MN Sci Total Environ; 2008 Feb; 390(2-3):448-55. PubMed ID: 18031792 [TBL] [Abstract][Full Text] [Related]
19. Solar water disinfection (SODIS) of Escherichia coli, Enterococcus spp., and MS2 coliphage: effects of additives and alternative container materials. Fisher MB; Iriarte M; Nelson KL Water Res; 2012 Apr; 46(6):1745-54. PubMed ID: 22257930 [TBL] [Abstract][Full Text] [Related]
20. The impact of pond depth and environmental conditions on sunlight inactivation of Escherichia coli and enterococci in wastewater in a warm climate. Maïga Y; Wethe J; Denyigba K; Ouattara AS Can J Microbiol; 2009 Dec; 55(12):1364-74. PubMed ID: 20029528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]