BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 17879145)

  • 1. Biochemistry and bioenergetics of glutaryl-CoA dehydrogenase deficiency.
    Sauer SW
    J Inherit Metab Dis; 2007 Oct; 30(5):673-80. PubMed ID: 17879145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifactorial modulation of susceptibility to l-lysine in an animal model of glutaric aciduria type I.
    Sauer SW; Opp S; Komatsuzaki S; Blank AE; Mittelbronn M; Burgard P; Koeller DM; Okun JG; Kölker S
    Biochim Biophys Acta; 2015 May; 1852(5):768-77. PubMed ID: 25558815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioenergetics in glutaryl-coenzyme A dehydrogenase deficiency: a role for glutaryl-coenzyme A.
    Sauer SW; Okun JG; Schwab MA; Crnic LR; Hoffmann GF; Goodman SI; Koeller DM; Kölker S
    J Biol Chem; 2005 Jun; 280(23):21830-6. PubMed ID: 15840571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated glutaric acid levels in Dhtkd1-/Gcdh- double knockout mice challenge our current understanding of lysine metabolism.
    Biagosch C; Ediga RD; Hensler SV; Faerberboeck M; Kuehn R; Wurst W; Meitinger T; Kölker S; Sauer S; Prokisch H
    Biochim Biophys Acta Mol Basis Dis; 2017 Sep; 1863(9):2220-2228. PubMed ID: 28545977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood-brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency.
    Sauer SW; Okun JG; Fricker G; Mahringer A; Müller I; Crnic LR; Mühlhausen C; Hoffmann GF; Hörster F; Goodman SI; Harding CO; Koeller DM; Kölker S
    J Neurochem; 2006 May; 97(3):899-910. PubMed ID: 16573641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maturation-dependent neurotoxicity of 3-hydroxyglutaric and glutaric acids in vitro: a new pathophysiologic approach to glutaryl-CoA dehydrogenase deficiency.
    Kölker S; Ahlemeyer B; Krieglstein J; Hoffmann GF
    Pediatr Res; 2000 Apr; 47(4 Pt 1):495-503. PubMed ID: 10759157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marked reduction of Na(+), K(+)-ATPase and creatine kinase activities induced by acute lysine administration in glutaryl-CoA dehydrogenase deficient mice.
    Amaral AU; Cecatto C; Seminotti B; Zanatta Â; Fernandes CG; Busanello EN; Braga LM; Ribeiro CA; de Souza DO; Woontner M; Koeller DM; Goodman S; Wajner M
    Mol Genet Metab; 2012 Sep; 107(1-2):81-6. PubMed ID: 22578804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport and distribution of 3-hydroxyglutaric acid before and during induced encephalopathic crises in a mouse model of glutaric aciduria type 1.
    Keyser B; Glatzel M; Stellmer F; Kortmann B; Lukacs Z; Kölker S; Sauer SW; Muschol N; Herdering W; Thiem J; Goodman SI; Koeller DM; Ullrich K; Braulke T; Mühlhausen C
    Biochim Biophys Acta; 2008 Jun; 1782(6):385-90. PubMed ID: 18348873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I.
    Sauer SW; Opp S; Hoffmann GF; Koeller DM; Okun JG; Kölker S
    Brain; 2011 Jan; 134(Pt 1):157-70. PubMed ID: 20923787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute renal proximal tubule alterations during induced metabolic crises in a mouse model of glutaric aciduria type 1.
    Thies B; Meyer-Schwesinger C; Lamp J; Schweizer M; Koeller DM; Ullrich K; Braulke T; Mühlhausen C
    Biochim Biophys Acta; 2013 Oct; 1832(10):1463-72. PubMed ID: 23623985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutaric acidemia type 1.
    Hedlund GL; Longo N; Pasquali M
    Am J Med Genet C Semin Med Genet; 2006 May; 142C(2):86-94. PubMed ID: 16602100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evidence that overexpression of NR2B glutamate receptor subunit is associated with brain vacuolation in adult glutaryl-CoA dehydrogenase deficient mice: A potential role for glutamatergic-induced excitotoxicity in GA I neuropathology.
    Rodrigues MD; Seminotti B; Amaral AU; Leipnitz G; Goodman SI; Woontner M; de Souza DO; Wajner M
    J Neurol Sci; 2015 Dec; 359(1-2):133-40. PubMed ID: 26671102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogenesis of brain damage in glutaric acidemia type I: Lessons from the genetic mice model.
    Wajner M; Amaral AU; Leipnitz G; Seminotti B
    Int J Dev Neurosci; 2019 Nov; 78():215-221. PubMed ID: 31125684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathomechanisms of neurodegeneration in glutaryl-CoA dehydrogenase deficiency.
    Kölker S; Koeller DM; Okun JG; Hoffmann GF
    Ann Neurol; 2004 Jan; 55(1):7-12. PubMed ID: 14705106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disturbance of the glutamatergic system by glutaric acid in striatum and cerebral cortex of glutaryl-CoA dehydrogenase-deficient knockout mice: possible implications for the neuropathology of glutaric acidemia type I.
    Busanello EN; Fernandes CG; Martell RV; Lobato VG; Goodman S; Woontner M; de Souza DO; Wajner M
    J Neurol Sci; 2014 Nov; 346(1-2):260-7. PubMed ID: 25241940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload.
    Amaral AU; Cecatto C; Seminotti B; Ribeiro CA; Lagranha VL; Pereira CC; de Oliveira FH; de Souza DG; Goodman S; Woontner M; Wajner M
    Brain Res; 2015 Sep; 1620():116-29. PubMed ID: 25998543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Animal models for glutaryl-CoA dehydrogenase deficiency.
    Koeller DM; Sauer S; Wajner M; de Mello CF; Goodman SI; Woontner M; Mühlhausen C; Okun JG; Kölker S
    J Inherit Metab Dis; 2004; 27(6):813-8. PubMed ID: 15505386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute lysine overload provokes marked striatum injury involving oxidative stress signaling pathways in glutaryl-CoA dehydrogenase deficient mice.
    Amaral AU; Seminotti B; da Silva JC; de Oliveira FH; Ribeiro RT; Leipnitz G; Souza DO; Wajner M
    Neurochem Int; 2019 Oct; 129():104467. PubMed ID: 31121257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of Na+, K+-ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: a possible mechanism for brain injury in glutaric aciduria type I.
    Amaral AU; Seminotti B; Cecatto C; Fernandes CG; Busanello EN; Zanatta Â; Kist LW; Bogo MR; de Souza DO; Woontner M; Goodman S; Koeller DM; Wajner M
    Mol Genet Metab; 2012 Nov; 107(3):375-82. PubMed ID: 22999741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of brain redox homeostasis in glutaryl-CoA dehydrogenase deficient mice treated with high dietary lysine supplementation.
    Seminotti B; Amaral AU; da Rosa MS; Fernandes CG; Leipnitz G; Olivera-Bravo S; Barbeito L; Ribeiro CA; de Souza DO; Woontner M; Goodman SI; Koeller DM; Wajner M
    Mol Genet Metab; 2013 Jan; 108(1):30-9. PubMed ID: 23218171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.