BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 17879272)

  • 1. Extracellular space in mouse cerebellar cortex revealed by in vivo cryotechnique.
    Ohno N; Terada N; Saitoh S; Ohno S
    J Comp Neurol; 2007 Nov; 505(3):292-301. PubMed ID: 17879272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes at synapses after delayed perfusion fixation in different regions of the mouse brain.
    Tao-Cheng JH; Gallant PE; Brightman MW; Dosemeci A; Reese TS
    J Comp Neurol; 2007 Apr; 501(5):731-40. PubMed ID: 17299754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Survival of interneurons and parallel fiber synapses in a cerebellar cortex deprived of Purkinje cells: studies in the double mutant mouse Grid2Lc/+;Bax(-/-).
    Zanjani SH; Selimi F; Vogel MW; Haeberlé AM; Boeuf J; Mariani J; Bailly YJ
    J Comp Neurol; 2006 Aug; 497(4):622-35. PubMed ID: 16739195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conventional and high resolution field emission scanning electron microscopy of vertebrate cerebellar parallel fiber-Purkinje spine synapses.
    Castejón OJ; Apkarian RP
    Cell Mol Biol (Noisy-le-grand); 1993 Dec; 39(8):863-73. PubMed ID: 8298435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field emission scanning electron microscopy and freeze-fracture transmission electron microscopy of mouse cerebellar synaptic contacts.
    Castejón OJ; Apkarian RP; Castejón HV; Alvarado MV
    J Submicrosc Cytol Pathol; 2001 Jul; 33(3):289-300. PubMed ID: 11846097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic morphology of erythrocytes revealed by cryofixation technique.
    Terada N; Ohno S
    Kaibogaku Zasshi; 1998 Dec; 73(6):587-93. PubMed ID: 9990195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of 'in vivo cryotechnique' for morphofunctional analyses of living animal organs.
    Ohno S; Terada N; Ohno N; Saitoh S; Saitoh Y; Fujii Y
    J Electron Microsc (Tokyo); 2010; 59(5):395-408. PubMed ID: 20667816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural analysis of catecholaminergic innervation in weaver and normal mouse cerebellar cortices.
    Abbott LC; Sotelo C
    J Comp Neurol; 2000 Oct; 426(2):316-29. PubMed ID: 10982471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Information coding capacity of cerebellar parallel fibers.
    Huang CM; Pirtle JA; Wang YP; Huang RH
    Brain Res Bull; 2006 Jun; 70(1):49-54. PubMed ID: 16750482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptogenesis in the cerebellar cortex: differential regulation of gephyrin and GABAA receptors at somatic and dendritic synapses of Purkinje cells.
    Viltono L; Patrizi A; Fritschy JM; Sassoè-Pognetto M
    J Comp Neurol; 2008 Jun; 508(4):579-91. PubMed ID: 18366064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extrasynaptic volume transmission and diffusion parameters of the extracellular space.
    Syková E
    Neuroscience; 2004; 129(4):861-76. PubMed ID: 15561404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Regularity of synaptic contacts forming in the molecular layer of the cerebral cortex after brief total brain anoxia].
    Stepanov SS; Semchenko VV; Sergeeva ED
    Morfologiia; 2000; 118(4):23-8. PubMed ID: 12629800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of cryobiopsy to morphological and immunohistochemical analyses of xenografted human lung cancer tissues and functional blood vessels.
    Ohno N; Terada N; Bai Y; Saitoh S; Nakazawa T; Nakamura N; Naito I; Fujii Y; Katoh R; Ohno S
    Cancer; 2008 Sep; 113(5):1068-79. PubMed ID: 18623380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The patterns of focal reorganization of the synaptic pool at the molecular level of the cerebellar cortex in the ischemic period].
    Semchenko VV; Sergeeva ED; Stepanov SS
    Morfologiia; 1996; 109(1):7-11. PubMed ID: 8768556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebellar granule cell: ascending axon and parallel fiber.
    Huang CM; Wang L; Huang RH
    Eur J Neurosci; 2006 Apr; 23(7):1731-7. PubMed ID: 16623829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of the neural cell recognition molecule NB-3 to synapse formation between parallel fibers and Purkinje cells in mouse.
    Sakurai K; Toyoshima M; Ueda H; Matsubara K; Takeda Y; Karagogeos D; Shimoda Y; Watanabe K
    Dev Neurobiol; 2009 Oct; 69(12):811-24. PubMed ID: 19672956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteoglycan ultracytochemistry and conventional and high resolution scanning electron microscopy of vertebrate cerebellar parallel fiber presynaptic endings.
    Castejón OJ; Castejón HV; Apkarian RP
    Cell Mol Biol (Noisy-le-grand); 1994 Sep; 40(6):795-801. PubMed ID: 7812187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Aspartate aminotransferase of the human cerebellar cortex].
    Kalinichenko SG; Okhotin VE; Motavkin PA
    Tsitologiia; 1995; 37(9-10):910-4. PubMed ID: 8815605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extrasynaptic transmission and the diffusion parameters of the extracellular space.
    Syková E; Vargová L
    Neurochem Int; 2008 Jan; 52(1-2):5-13. PubMed ID: 17513016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium signals in cerebellar Purkinje neurons and Bergmann glial cells evoked by glutamatergic synaptic transmission.
    Bennay M; Langer J; Meier SD; Kafitz KW; Rose CR
    Glia; 2008 Aug; 56(10):1138-49. PubMed ID: 18442095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.