BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 17879636)

  • 1. Segmentation of transitional cell carcinoma nuclei by nonsupervised thresholding in different color spaces.
    Pavlopoulos PM; Zimeras S; Kavantzas N; Korkolopoulou P; Agapitos E; Patsouris E
    Anal Quant Cytol Histol; 2007 Aug; 29(4):271-8. PubMed ID: 17879636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of immunohistochemical staining by color translation and automated thresholding.
    Ruifrok AC
    Anal Quant Cytol Histol; 1997 Apr; 19(2):107-13. PubMed ID: 9113303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated cell nuclear segmentation in color images of hematoxylin and eosin-stained breast biopsy.
    Latson L; Sebek B; Powell KA
    Anal Quant Cytol Histol; 2003 Dec; 25(6):321-31. PubMed ID: 14714298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated segmentation of routinely hematoxylin-eosin-stained microscopic images by combining support vector machine clustering and active contour models.
    Glotsos D; Spyridonos P; Cavouras D; Ravazoula P; Dadioti PA; Nikiforidis G
    Anal Quant Cytol Histol; 2004 Dec; 26(6):331-40. PubMed ID: 15678615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic segmentation of cell nuclei in Feulgen-stained histological sections of prostate cancer and quantitative evaluation of segmentation results.
    Nielsen B; Albregtsen F; Danielsen HE
    Cytometry A; 2012 Jul; 81(7):588-601. PubMed ID: 22605528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Value of computer-assisted quantitative nuclear grading in differentiation of normal urothelial cells from low and high grade transitional cell carcinoma.
    Wojcik EM; Miller MC; O'Dowd GJ; Veltri RW
    Anal Quant Cytol Histol; 1998 Feb; 20(1):69-76. PubMed ID: 9513693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphometry of bladder carcinoma: definition of a new variable.
    Sowter C; Sowter G; Slavin G; Rosen D
    Anal Cell Pathol; 1990 Jul; 2(4):205-13. PubMed ID: 2275868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using cell nuclei features to detect colon cancer tissue in hematoxylin and eosin stained slides.
    Jørgensen AS; Rasmussen AM; Andersen NKM; Andersen SK; Emborg J; Røge R; Østergaard LR
    Cytometry A; 2017 Aug; 91(8):785-793. PubMed ID: 28727286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prognostic significance of nuclear morphometry in superficial bladder cancer.
    Ozer E; Yörükoğlu K; Mungan MU; Ozkal S; Demirel D; Sağol O; Kirkali Z
    Anal Quant Cytol Histol; 2001 Aug; 23(4):251-6. PubMed ID: 11531139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance evaluation of maximal separation techniques in immunohistochemical scoring of tissue images.
    Hameed KA; Banumathi A; Ulaganathan G
    Micron; 2015 Dec; 79():29-35. PubMed ID: 26313715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariate classifications of transitional cell tumors of the bladder: nuclear abnormality index and pattern recognition analysis.
    Montironi R; Scarpelli M; Pisani E; Ansuini G; Collina G; Mariuzzi GM; Collan Y
    Appl Pathol; 1986; 4(1-2):48-54. PubMed ID: 3555547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural network-based segmentation and classification system for automated grading of histologic sections of bladder carcinoma.
    Spyridonos P; Cavouras D; Ravazoula P; Nikiforidis G
    Anal Quant Cytol Histol; 2002 Dec; 24(6):317-24. PubMed ID: 12508689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of radial basis function neural networks in discriminating benign from malignant lesions of the lower urinary tract.
    Karakitsos P; Pouliakis A; Kordalis G; Georgoulakis J; Kittas C; Kyroudes A
    Anal Quant Cytol Histol; 2005 Feb; 27(1):35-42. PubMed ID: 15794450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A nucleus area extraction method for image analysis of kidney-tissue slice].
    Zhang J; Zhu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Aug; 24(4):923-7. PubMed ID: 17899775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grading of transitional cell bladder carcinoma by image analysis of histological sections.
    Jarkrans T; Vasko J; Bengtsson E; Choi HK; Malmström PU; Wester K; Busch C
    Anal Cell Pathol; 1995 Mar; 8(2):135-58. PubMed ID: 7786812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An algorithm for automatic tracking of nuclear boundaries.
    Xiao J; Christen R; Minimo C; Bartels PH; Bibbo M
    Anal Quant Cytol Histol; 1994 Aug; 16(4):240-6. PubMed ID: 7945699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supervised learning-based cell image segmentation for p53 immunohistochemistry.
    Mao KZ; Zhao P; Tan PH
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1153-63. PubMed ID: 16761842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic segmentation of cell nuclei in bladder and skin tissue for karyometric analysis.
    Korde VR; Bartels H; Barton J; Ranger-Moore J
    Anal Quant Cytol Histol; 2009 Apr; 31(2):83-9. PubMed ID: 19402384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning-based Method for P53 Immunohistochemically Stained Cell Image Segmentation.
    Mao K; Zhao P; Tan PH
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():3264-7. PubMed ID: 17282942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional agnor evaluation as a prognostic variable in urinary bladder carcinoma: a different approach via total agnor area/nucleus area per cell.
    Cucer N; Imamoglu N; Tozak H; Demirtas H; Sarac F; Tatlisen A; Oztürk F
    Micron; 2007; 38(6):674-9. PubMed ID: 17011198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.