These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17879801)

  • 1. Effect of dose reduction on the detection of mammographic lesions: a mathematical observer model analysis.
    Chawla AS; Samei E; Saunders R; Abbey C; Delong D
    Med Phys; 2007 Aug; 34(8):3385-98. PubMed ID: 17879801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical model platform for optimizing a multiprojection breast imaging system.
    Chawla AS; Samei E; Saunders RS; Lo JY; Baker JA
    Med Phys; 2008 Apr; 35(4):1337-45. PubMed ID: 18491528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of optimal use of computer-aided detection systems: the role of the "machine" in decision making process.
    Paquerault S; Hardy PT; Wersto N; Chen J; Smith RC
    Acad Radiol; 2010 Sep; 17(9):1112-21. PubMed ID: 20605489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging.
    Gong X; Glick SJ; Liu B; Vedula AA; Thacker S
    Med Phys; 2006 Apr; 33(4):1041-52. PubMed ID: 16696481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis.
    Shaheen E; Van Ongeval C; Zanca F; Cockmartin L; Marshall N; Jacobs J; Young KC; R Dance D; Bosmans H
    Med Phys; 2011 Dec; 38(12):6659-71. PubMed ID: 22149848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LCD versus CRT monitors for digital mammography: a comparison of observer performance for the detection of clustered microcalcifications and masses.
    Cha JH; Moon WK; Cho N; Lee EH; Park JS; Jang MJ
    Acta Radiol; 2009 Dec; 50(10):1104-8. PubMed ID: 19922305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between human observer performance and model observer performance in differential phase contrast CT.
    Li K; Garrett J; Chen GH
    Med Phys; 2013 Nov; 40(11):111905. PubMed ID: 24320438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of Al-equivalent thickness of just visible microcalcifications in full field digital mammograms.
    Carton AK; Bosmans H; Vandenbroucke D; Souverijns G; Van Ongeval C; Dragusin O; Marchal G
    Med Phys; 2004 Jul; 31(7):2165-76. PubMed ID: 15305471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative method for evaluating the detectability of lesions in digital mammography.
    Zanca F; Van Ongeval C; Jacobs J; Marchal G; Bosmans H
    Radiat Prot Dosimetry; 2008; 129(1-3):214-8. PubMed ID: 18319282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of masses and calcifications by soft-copy reading: comparison of two postprocessing algorithms for full-field digital mammography.
    Uematsu T
    Jpn J Radiol; 2009 May; 27(4):168-75. PubMed ID: 19499307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammographic density and cancer detection: does digital imaging challenge our current understanding?
    Al Mousa DS; Mello-Thoms C; Ryan EA; Lee WB; Pietrzyk MW; Reed WM; Heard R; Poulos A; Tan J; Li Y; Brennan PC
    Acad Radiol; 2014 Nov; 21(11):1377-85. PubMed ID: 25097013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer aided detection of masses in mammography using subregion Hotelling observers.
    Baydush AH; Catarious DM; Abbey CK; Floyd CE
    Med Phys; 2003 Jul; 30(7):1781-7. PubMed ID: 12906196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task-based lens design with application to digital mammography.
    Chen L; Barrett HH
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jan; 22(1):148-67. PubMed ID: 15669625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of simulated lesions on data-compressed digital mammograms.
    Suryanarayanan S; Karellas A; Vedantham S; Waldrop SM; D'Orsi CJ
    Radiology; 2005 Jul; 236(1):31-6. PubMed ID: 15983071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using computer-extracted image features for modeling of error-making patterns in detection of mammographic masses among radiology residents.
    Zhang J; Lo JY; Kuzmiak CM; Ghate SV; Yoon SC; Mazurowski MA
    Med Phys; 2014 Sep; 41(9):091907. PubMed ID: 25186394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is an ROC-type response truly always better than a binary response in observer performance studies?
    Gur D; Bandos AI; Rockette HE; Zuley ML; Hakim CM; Chough DM; Ganott MA; Sumkin JH
    Acad Radiol; 2010 May; 17(5):639-45. PubMed ID: 20236840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using simple mathematical functions to simulate pathological structures--input for digital mammography clinical trial.
    Ruschin M; Tingberg A; Båth M; Grahn A; Håkansson M; Hemdal B; Andersson I
    Radiat Prot Dosimetry; 2005; 114(1-3):424-31. PubMed ID: 15933150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suitability of new anode materials in mammography: dose and subject contrast considerations using Monte Carlo simulation.
    Delis H; Spyrou G; Costaridou L; Tzanakos G; Panayiotakis G
    Med Phys; 2006 Nov; 33(11):4221-35. PubMed ID: 17153401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real and simulated clustered microcalcifications in digital mammograms. ROC study of observer performance.
    Lado MJ; Tahoces PG; Souto M; Méndez AJ; Vidal JJ
    Med Phys; 1997 Sep; 24(9):1385-94. PubMed ID: 9304566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of prior mammograms on combined reading of digital mammography and digital breast tomosynthesis.
    Kim WH; Chang JM; Koo HR; Seo M; Bae MS; Lee J; Moon WK
    Acta Radiol; 2017 Feb; 58(2):148-155. PubMed ID: 27178032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.