BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17879801)

  • 1. Effect of dose reduction on the detection of mammographic lesions: a mathematical observer model analysis.
    Chawla AS; Samei E; Saunders R; Abbey C; Delong D
    Med Phys; 2007 Aug; 34(8):3385-98. PubMed ID: 17879801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical model platform for optimizing a multiprojection breast imaging system.
    Chawla AS; Samei E; Saunders RS; Lo JY; Baker JA
    Med Phys; 2008 Apr; 35(4):1337-45. PubMed ID: 18491528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of optimal use of computer-aided detection systems: the role of the "machine" in decision making process.
    Paquerault S; Hardy PT; Wersto N; Chen J; Smith RC
    Acad Radiol; 2010 Sep; 17(9):1112-21. PubMed ID: 20605489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging.
    Gong X; Glick SJ; Liu B; Vedula AA; Thacker S
    Med Phys; 2006 Apr; 33(4):1041-52. PubMed ID: 16696481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis.
    Shaheen E; Van Ongeval C; Zanca F; Cockmartin L; Marshall N; Jacobs J; Young KC; R Dance D; Bosmans H
    Med Phys; 2011 Dec; 38(12):6659-71. PubMed ID: 22149848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LCD versus CRT monitors for digital mammography: a comparison of observer performance for the detection of clustered microcalcifications and masses.
    Cha JH; Moon WK; Cho N; Lee EH; Park JS; Jang MJ
    Acta Radiol; 2009 Dec; 50(10):1104-8. PubMed ID: 19922305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between human observer performance and model observer performance in differential phase contrast CT.
    Li K; Garrett J; Chen GH
    Med Phys; 2013 Nov; 40(11):111905. PubMed ID: 24320438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of Al-equivalent thickness of just visible microcalcifications in full field digital mammograms.
    Carton AK; Bosmans H; Vandenbroucke D; Souverijns G; Van Ongeval C; Dragusin O; Marchal G
    Med Phys; 2004 Jul; 31(7):2165-76. PubMed ID: 15305471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative method for evaluating the detectability of lesions in digital mammography.
    Zanca F; Van Ongeval C; Jacobs J; Marchal G; Bosmans H
    Radiat Prot Dosimetry; 2008; 129(1-3):214-8. PubMed ID: 18319282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of masses and calcifications by soft-copy reading: comparison of two postprocessing algorithms for full-field digital mammography.
    Uematsu T
    Jpn J Radiol; 2009 May; 27(4):168-75. PubMed ID: 19499307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammographic density and cancer detection: does digital imaging challenge our current understanding?
    Al Mousa DS; Mello-Thoms C; Ryan EA; Lee WB; Pietrzyk MW; Reed WM; Heard R; Poulos A; Tan J; Li Y; Brennan PC
    Acad Radiol; 2014 Nov; 21(11):1377-85. PubMed ID: 25097013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer aided detection of masses in mammography using subregion Hotelling observers.
    Baydush AH; Catarious DM; Abbey CK; Floyd CE
    Med Phys; 2003 Jul; 30(7):1781-7. PubMed ID: 12906196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task-based lens design with application to digital mammography.
    Chen L; Barrett HH
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jan; 22(1):148-67. PubMed ID: 15669625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of simulated lesions on data-compressed digital mammograms.
    Suryanarayanan S; Karellas A; Vedantham S; Waldrop SM; D'Orsi CJ
    Radiology; 2005 Jul; 236(1):31-6. PubMed ID: 15983071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using computer-extracted image features for modeling of error-making patterns in detection of mammographic masses among radiology residents.
    Zhang J; Lo JY; Kuzmiak CM; Ghate SV; Yoon SC; Mazurowski MA
    Med Phys; 2014 Sep; 41(9):091907. PubMed ID: 25186394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is an ROC-type response truly always better than a binary response in observer performance studies?
    Gur D; Bandos AI; Rockette HE; Zuley ML; Hakim CM; Chough DM; Ganott MA; Sumkin JH
    Acad Radiol; 2010 May; 17(5):639-45. PubMed ID: 20236840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using simple mathematical functions to simulate pathological structures--input for digital mammography clinical trial.
    Ruschin M; Tingberg A; Båth M; Grahn A; Håkansson M; Hemdal B; Andersson I
    Radiat Prot Dosimetry; 2005; 114(1-3):424-31. PubMed ID: 15933150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suitability of new anode materials in mammography: dose and subject contrast considerations using Monte Carlo simulation.
    Delis H; Spyrou G; Costaridou L; Tzanakos G; Panayiotakis G
    Med Phys; 2006 Nov; 33(11):4221-35. PubMed ID: 17153401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real and simulated clustered microcalcifications in digital mammograms. ROC study of observer performance.
    Lado MJ; Tahoces PG; Souto M; Méndez AJ; Vidal JJ
    Med Phys; 1997 Sep; 24(9):1385-94. PubMed ID: 9304566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of prior mammograms on combined reading of digital mammography and digital breast tomosynthesis.
    Kim WH; Chang JM; Koo HR; Seo M; Bae MS; Lee J; Moon WK
    Acta Radiol; 2017 Feb; 58(2):148-155. PubMed ID: 27178032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.