These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17879869)

  • 1. Membrane skeleton detachment in spherical and cylindrical microexovesicles.
    Hägerstrand H; Kralj-Iglic V; Bobrowska-Hägerstrand M; Iglic A
    Bull Math Biol; 1999 Nov; 61(6):1019-30. PubMed ID: 17879869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphiphile-induced spherical microexovesicle corresponds to an extreme local area difference between two monolayers of the membrane bilayer.
    Iglic A; Hägerstrand H
    Med Biol Eng Comput; 1999 Jan; 37(1):125-9. PubMed ID: 10396854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of band 3 protein absence and skeletal structures on amphiphile- and Ca(2+)-induced shape alterations in erythrocytes: a study with lamprey (Lampetra fluviatilis), trout (Onchorhynchus mykiss) and human erythrocytes.
    Hägerstrand H; Danieluk M; Bobrowska-Hägerstrand M; Iglic A; Wróbel A; Isomaa B; Nikinmaa M
    Biochim Biophys Acta; 2000 Jun; 1466(1-2):125-38. PubMed ID: 10825437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable tubular microexovesicles of the erythrocyte membrane induced by dimeric amphiphiles.
    Kralj-Iglic V; Iglic A; Hägerstrand H; Peterlin P
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt B):4230-4. PubMed ID: 11088219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of control of erythrocyte shape: a possible relationship to band 3.
    Wong P
    J Theor Biol; 1994 Nov; 171(2):197-205. PubMed ID: 7844997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of spiculated red blood cells induced by intercalation of amphiphiles in cell membrane.
    Iglic A; Kralj-Iglic V; Hägerstrand H
    Med Biol Eng Comput; 1998 Mar; 36(2):251-5. PubMed ID: 9684471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spherocyte shape transformation and release of tubular nanovesicles in human erythrocytes.
    Iglic A; Veranic P; Jezernik K; Fosnaric M; Kamin B; Hägerstrand H; Kralj-Iglic V
    Bioelectrochemistry; 2004 May; 62(2):159-61. PubMed ID: 15039020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depletion of membrane skeleton in red blood cell vesicles.
    Iglic A; Svetina S; Zeks B
    Biophys J; 1995 Jul; 69(1):274-9. PubMed ID: 7669905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Elasticity of the erythrocyte membrane: overview and attempted explanation based on recent data on the ultrastructure of the membrane skeleton].
    Scheven C; Stibenz D
    Gegenbaurs Morphol Jahrb; 1983; 129(3):287-98. PubMed ID: 6350099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defined rearrangement of the membrane of banked erythrocytes.
    Halbhuber KJ; Stibenz D; Feuerstein H; Linss W; Meyer HW; Fröber R; Rumpel E; Geyer G
    Acta Biol Med Ger; 1981; 40(4-5):419-21. PubMed ID: 7315091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distributions of proteins and lipids in the erythrocyte membrane.
    Rodgers W; Glaser M
    Biochemistry; 1993 Nov; 32(47):12591-8. PubMed ID: 8251477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular maps of red cell deformation: hidden elasticity and in situ connectivity.
    Discher DE; Mohandas N; Evans EA
    Science; 1994 Nov; 266(5187):1032-5. PubMed ID: 7973655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of antibodies to membrane skeletal proteins on the shape of erythrocytes and their ability to respond to shape-modulating agents. Important role of 4.1 protein in the determination/maintenance of the discoid shape of erythrocytes.
    Pestonjamasp KN; Mehta NG
    Exp Cell Res; 1995 Jul; 219(1):74-81. PubMed ID: 7628552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Influence of new hybrid antioxidants ichphans on erythrocyte morphology].
    Parshina EIu; Gendel' LIa; Rubin AB
    Biofizika; 2004; 49(6):1094-8. PubMed ID: 15612552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural alteration of the membrane of erythrocytes infected with Plasmodium falciparum.
    Aikawa M; Udeinya IJ; Rabbege J; Dayan M; Leech JH; Howard RJ; Miller LH
    J Protozool; 1985 Aug; 32(3):424-9. PubMed ID: 2931514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanism of red blood cell shape change and release of spectrin-free vesicles.
    Müller H; Schmidt U; Lutz HU
    Acta Biol Med Ger; 1981; 40(4-5):413-7. PubMed ID: 6274111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erythrocyte spectrin alteration induced by low-density lipoprotein.
    Hui DY; Harmony JA
    J Supramol Struct; 1979; 10(2):253-63. PubMed ID: 222969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Torocyte membrane endovesicles induced by octaethyleneglycol dodecylether in human erythrocytes.
    Bobrowska-Hägerstrand M; Kralj-Iglic V; Iglic A; Bialkowska K; Isomaa B; Hägerstrand H
    Biophys J; 1999 Dec; 77(6):3356-62. PubMed ID: 10585958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erythrocyte membrane proteins: a modified Gorter-Grendel experiment.
    Blank M; Soo L; Abbott RE
    J Membr Biol; 1979 May; 47(2):185-93. PubMed ID: 490622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Junctional sites of erythrocyte skeletal proteins are specific targets of tert-butylhydroperoxide oxidative damage.
    Caprari P; Bozzi A; Malorni W; Bottini A; Iosi F; Santini MT; Salvati AM
    Chem Biol Interact; 1995 Mar; 94(3):243-58. PubMed ID: 7820887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.