BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17879985)

  • 1. Formulation and statistical optimization of a novel crosslinked polymeric anti-tuberculosis drug delivery system.
    du Toit LC; Pillay V; Danckwerts MP; Penny C
    J Pharm Sci; 2008 Jun; 97(6):2176-207. PubMed ID: 17879985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alginate microspheres of isoniazid for oral sustained drug delivery.
    Rastogi R; Sultana Y; Aqil M; Ali A; Kumar S; Chuttani K; Mishra AK
    Int J Pharm; 2007 Apr; 334(1-2):71-7. PubMed ID: 17113732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mesoporous silicon/poly-(DL-lactic-co-glycolic) acid microsphere for long time anti-tuberculosis drug delivery.
    Xu W; Wei X; Wei K; Cao X; Zhong S
    Int J Pharm; 2014 Dec; 476(1-2):116-23. PubMed ID: 25271077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rifampicin-loaded 'flower-like' polymeric micelles for enhanced oral bioavailability in an extemporaneous liquid fixed-dose combination with isoniazid.
    Moretton MA; Hocht C; Taira C; Sosnik A
    Nanomedicine (Lond); 2014 Aug; 9(11):1635-50. PubMed ID: 24410279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encapsulation of Rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with Isoniazid at acidic pH.
    Singh H; Bhandari R; Kaur IP
    Int J Pharm; 2013 Mar; 446(1-2):106-11. PubMed ID: 23410991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ascorbic acid improves stability and pharmacokinetics of rifampicin in the presence of isoniazid.
    Rajaram S; Vemuri VD; Natham R
    J Pharm Biomed Anal; 2014 Nov; 100():103-108. PubMed ID: 25151231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oral matrix tablet formulations for concomitant controlled release of anti-tubercular drugs: design and in vitro evaluations.
    Hiremath PS; Saha RN
    Int J Pharm; 2008 Oct; 362(1-2):118-25. PubMed ID: 18640251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation of Tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs.
    Mehta SK; Jindal N
    Colloids Surf B Biointerfaces; 2013 Jan; 101():434-41. PubMed ID: 23010052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and evaluation of enteric-coated tablets for rifampicin and isoniazid combinations.
    Wang Y; Liu H; Liu K; Sun J; He Z
    Pharm Dev Technol; 2013; 18(2):401-6. PubMed ID: 22339279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formulation, optimization, and characterization of rifampicin-loaded solid lipid nanoparticles for the treatment of tuberculosis.
    Chokshi NV; Khatri HN; Patel MM
    Drug Dev Ind Pharm; 2018 Dec; 44(12):1975-1989. PubMed ID: 30058392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and optimization of polymeric nanoparticles of antitubercular drugs using central composite factorial design.
    Chawla R; Jaiswal S; Mishra B
    Expert Opin Drug Deliv; 2014 Jan; 11(1):31-43. PubMed ID: 23802585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-encapsulation of isoniazid and rifampicin in liposomes and characterization of liposomes by derivative spectroscopy.
    Gürsoy A; Kut E; Ozkirimli S
    Int J Pharm; 2004 Mar; 271(1-2):115-23. PubMed ID: 15129978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of rifampicin in dissolution medium in presence of isoniazid.
    Shishoo CJ; Shah SA; Rathod IS; Savale SS; Kotecha JS; Shah PB
    Int J Pharm; 1999 Nov; 190(1):109-23. PubMed ID: 10528103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Stability of Tuberculosis Drug Fixed-Dose Combination Using Isoniazid-Caffeic Acid and Vanillic Acid Cocrystal.
    Battini S; Mannava MKC; Nangia A
    J Pharm Sci; 2018 Jun; 107(6):1667-1679. PubMed ID: 29462633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical approach for the simultaneous in vitro spectrophotometric analysis of rifampicin and isoniazid from modified-release anti-TB drug delivery systems.
    du Toit L; Pillay V; Choonara Y
    Curr Drug Deliv; 2010 Jan; 7(1):5-12. PubMed ID: 19863485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spray-dried particles as pulmonary delivery system of anti-tubercular drugs: design, optimization, in vitro and in vivo evaluation.
    Garg T; Goyal AK; Rath G; Murthy RS
    Pharm Dev Technol; 2016 Dec; 21(8):951-960. PubMed ID: 26334961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmaceutical formulation of a fixed-dose anti-tuberculosis combination.
    Danckwerts MP; Ebrahim S; Pillay V
    Int J Tuberc Lung Dis; 2003 Mar; 7(3):289-97. PubMed ID: 12661846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gelatin nanocarriers as potential vectors for effective management of tuberculosis.
    Saraogi GK; Gupta P; Gupta UD; Jain NK; Agrawal GP
    Int J Pharm; 2010 Jan; 385(1-2):143-9. PubMed ID: 19819315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crosslinked electrospun PVA nanofibrous membranes: elucidation of their physicochemical, physicomechanical and molecular disposition.
    Shaikh RP; Kumar P; Choonara YE; du Toit LC; Pillay V
    Biofabrication; 2012 Jun; 4(2):025002. PubMed ID: 22427482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, biometric simulation and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain.
    Pillay S; Pillay V; Choonara YE; Naidoo D; Khan RA; du Toit LC; Ndesendo VM; Modi G; Danckwerts MP; Iyuke SE
    Int J Pharm; 2009 Dec; 382(1-2):277-90. PubMed ID: 19703530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.