These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 17880126)

  • 21. Observation of excited-state proton transfer in green fluorescent protein using ultrafast vibrational spectroscopy.
    Stoner-Ma D; Jaye AA; Matousek P; Towrie M; Meech SR; Tonge PJ
    J Am Chem Soc; 2005 Mar; 127(9):2864-5. PubMed ID: 15740117
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-resolved FTIR spectroscopy of the photointermediates involved in fast transient H+ release by proteorhodopsin.
    Xiao Y; Partha R; Krebs R; Braiman M
    J Phys Chem B; 2005 Jan; 109(1):634-41. PubMed ID: 16851056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time-resolved spectroscopy of ultrafast photoisomerization of octopus rhodopsin under photoexcitation.
    Yabushita A; Kobayashi T; Tsuda M
    J Phys Chem B; 2012 Feb; 116(6):1920-6. PubMed ID: 22251430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Femtosecond time-resolved stimulated Raman reveals the birth of bacteriorhodopsin's J and K intermediates.
    Shim S; Dasgupta J; Mathies RA
    J Am Chem Soc; 2009 Jun; 131(22):7592-7. PubMed ID: 19441850
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein-bound water molecules in primate red- and green-sensitive visual pigments.
    Katayama K; Furutani Y; Imai H; Kandori H
    Biochemistry; 2012 Feb; 51(6):1126-33. PubMed ID: 22260165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrafast photoreaction dynamics of a light-driven sodium-ion-pumping retinal protein from Krokinobacter eikastus revealed by femtosecond time-resolved absorption spectroscopy.
    Tahara S; Takeuchi S; Abe-Yoshizumi R; Inoue K; Ohtani H; Kandori H; Tahara T
    J Phys Chem Lett; 2015 Nov; 6(22):4481-6. PubMed ID: 26582475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural dynamics of light-driven proton pumps.
    Andersson M; Malmerberg E; Westenhoff S; Katona G; Cammarata M; Wöhri AB; Johansson LC; Ewald F; Eklund M; Wulff M; Davidsson J; Neutze R
    Structure; 2009 Sep; 17(9):1265-75. PubMed ID: 19748347
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The photocycle of channelrhodopsin-2: ultrafast reaction dynamics and subsequent reaction steps.
    Verhoefen MK; Bamann C; Blöcher R; Förster U; Bamberg E; Wachtveitl J
    Chemphyschem; 2010 Oct; 11(14):3113-22. PubMed ID: 20730849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photochromism of Anabaena sensory rhodopsin.
    Kawanabe A; Furutani Y; Jung KH; Kandori H
    J Am Chem Soc; 2007 Jul; 129(27):8644-9. PubMed ID: 17569538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selectivity of retinal photoisomerization in proteorhodopsin is controlled by aspartic acid 227.
    Imasheva ES; Balashov SP; Wang JM; Dioumaev AK; Lanyi JK
    Biochemistry; 2004 Feb; 43(6):1648-55. PubMed ID: 14769042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. F-MAS NMR on proteorhodopsin: enhanced protocol for site-specific labeling for general application to membrane proteins.
    Hellmich UA; Pfleger N; Glaubitz C
    Photochem Photobiol; 2009; 85(2):535-9. PubMed ID: 19192211
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sub-5-fs real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization.
    Kobayashi T; Yabushita A; Saito T; Ohtani H; Tsuda M
    Photochem Photobiol; 2007; 83(2):363-8. PubMed ID: 17132067
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectroscopic and photochemical analysis of proteorhodopsin variants from the surface of the Arctic Ocean.
    Jung JY; Choi AR; Lee YK; Lee HK; Jung KH
    FEBS Lett; 2008 May; 582(12):1679-84. PubMed ID: 18435930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Voltage- and pH-dependent changes in vectoriality of photocurrents mediated by wild-type and mutant proteorhodopsins upon expression in Xenopus oocytes.
    Lörinczi E; Verhoefen MK; Wachtveitl J; Woerner AC; Glaubitz C; Engelhard M; Bamberg E; Friedrich T
    J Mol Biol; 2009 Oct; 393(2):320-41. PubMed ID: 19631661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformational coupling between the cytoplasmic carboxylic acid and the retinal in a fungal light-driven proton pump.
    Furutani Y; Sumii M; Fan Y; Shi L; Waschuk SA; Brown LS; Kandori H
    Biochemistry; 2006 Dec; 45(51):15349-58. PubMed ID: 17176057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrafast spectroscopy of biological photoreceptors.
    Kennis JT; Groot ML
    Curr Opin Struct Biol; 2007 Oct; 17(5):623-30. PubMed ID: 17959372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein photochromism observed by ultrafast vibrational spectroscopy.
    Lukacs A; Haigney A; Brust R; Addison K; Towrie M; Greetham GM; Jones GA; Miyawaki A; Tonge PJ; Meech SR
    J Phys Chem B; 2013 Oct; 117(40):11954-9. PubMed ID: 24033093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrafast structural dynamics in BLUF domains: transient infrared spectroscopy of AppA and its mutants.
    Stelling AL; Ronayne KL; Nappa J; Tonge PJ; Meech SR
    J Am Chem Soc; 2007 Dec; 129(50):15556-64. PubMed ID: 18031038
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The early steps in the photocycle of a photosensor protein sensory rhodopsin I from Salinibacter ruber.
    Sudo Y; Mizuno M; Wei Z; Takeuchi S; Tahara T; Mizutani Y
    J Phys Chem B; 2014 Feb; 118(6):1510-8. PubMed ID: 24447185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural changes of Salinibacter sensory rhodopsin I upon formation of the K and M photointermediates.
    Suzuki D; Sudo Y; Furutani Y; Takahashi H; Homma M; Kandori H
    Biochemistry; 2008 Dec; 47(48):12750-9. PubMed ID: 18991393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.