These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17880254)

  • 21. Wrapping of single-walled carbon nanotubes by a pi-conjugated polymer: the role of polymer conformation-controlled size selectivity.
    Yi W; Malkovskiy A; Chu Q; Sokolov AP; Colon ML; Meador M; Pang Y
    J Phys Chem B; 2008 Oct; 112(39):12263-9. PubMed ID: 18774842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cetyltrimethylammonium bromide-coated titanate nanotubes for solid-phase extraction of phthalate esters from natural waters prior to high-performance liquid chromatography analysis.
    Niu H; Cai Y; Shi Y; Wei F; Mou S; Jiang G
    J Chromatogr A; 2007 Nov; 1172(2):113-20. PubMed ID: 17963775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wire-in-tube structure fabricated by single capillary electrospinning via nanoscale Kirkendall effect: the case of nickel-zinc ferrite.
    Fu J; Zhang J; Peng Y; Zhao C; He Y; Zhang Z; Pan X; Mellors NJ; Xie E
    Nanoscale; 2013 Dec; 5(24):12551-7. PubMed ID: 24173384
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An in situ Raman spectroscopy study of stress transfer between carbon nanotubes and polymer.
    Mu M; Osswald S; Gogotsi Y; Winey KI
    Nanotechnology; 2009 Aug; 20(33):335703. PubMed ID: 19636105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An analytical system for single nanomaterials: combination of capillary electrophoresis with Raman spectroscopy or with scanning probe microscopy for individual single-walled carbon nanotube analysis.
    Yamamoto T; Murakami Y; Motoyanagi J; Fukushima T; Maruyama S; Kato M
    Anal Chem; 2009 Sep; 81(17):7336-41. PubMed ID: 19658407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface.
    Brammer KS; Oh S; Cobb CJ; Bjursten LM; van der Heyde H; Jin S
    Acta Biomater; 2009 Oct; 5(8):3215-23. PubMed ID: 19447210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Layer-by-layer nanotube template synthesis.
    Hou S; Harrell CC; Trofin L; Kohli P; Martin CR
    J Am Chem Soc; 2004 May; 126(18):5674-5. PubMed ID: 15125653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rheo-optical studies of carbon nanotube suspensions.
    Fry D; Langhorst B; Wang H; Becker ML; Bauer BJ; Grulke EA; Hobbie EK
    J Chem Phys; 2006 Feb; 124(5):054703. PubMed ID: 16468897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light-controlled single-walled carbon nanotube dispersions in aqueous solution.
    Chen S; Jiang Y; Wang Z; Zhang X; Dai L; Smet M
    Langmuir; 2008 Sep; 24(17):9233-6. PubMed ID: 18672920
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of patterned polystyrene nanotube arrays in an anodic aluminum oxide template by photolithography and the multiwetting mechanism.
    Li X; Wang Y; Song G; Peng Z; Li P; Lin Q; Zhang N; Wang Z; Duan X
    J Phys Chem B; 2009 Sep; 113(36):12227-30. PubMed ID: 19689149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of CeO(2)-ZrO(2) ceramic fibers by electrospinning.
    Zhang Y; Li J; Li Q; Zhu L; Liu X; Zhong X; Meng J; Cao X
    J Colloid Interface Sci; 2007 Mar; 307(2):567-71. PubMed ID: 17223123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular imprinting at walls of silica nanotubes for TNT recognition.
    Xie C; Liu B; Wang Z; Gao D; Guan G; Zhang Z
    Anal Chem; 2008 Jan; 80(2):437-43. PubMed ID: 18088103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication, structural characterization and formation mechanism of multiferroic BiFeO3 nanotubes.
    Singh S; Krupanidhi SB
    J Nanosci Nanotechnol; 2008 Jan; 8(1):335-9. PubMed ID: 18468079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SDS surfactants on carbon nanotubes: aggregate morphology.
    Tummala NR; Striolo A
    ACS Nano; 2009 Mar; 3(3):595-602. PubMed ID: 19228060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalyst volume to surface area constraints for nucleating carbon nanotubes.
    Rümmeli MH; Kramberger C; Löffler M; Jost O; Bystrzejewski M; Grüneis A; Gemming T; Pompe W; Büchner B; Pichler T
    J Phys Chem B; 2007 Jul; 111(28):8234-41. PubMed ID: 17580861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of molecular weight on the ultrasonic degradation of poly(vinyl-pyrrolidone).
    Taghizadeh MT; Asadpour T
    Ultrason Sonochem; 2009 Feb; 16(2):280-6. PubMed ID: 18799342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Needleless electrospinning with twisted wire spinneret.
    Holopainen J; Penttinen T; Santala E; Ritala M
    Nanotechnology; 2015 Jan; 26(2):025301. PubMed ID: 25513842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of curled conducting polymer microfibrous arrays via a novel electrospinning method for stretchable strain sensors.
    Sun B; Long YZ; Liu SL; Huang YY; Ma J; Zhang HD; Shen G; Xu S
    Nanoscale; 2013 Aug; 5(15):7041-5. PubMed ID: 23807533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling the carbon nanotube-to-medium conductivity ratio for dielectrophoretic separation.
    Kang J; Hong S; Kim Y; Baik S
    Langmuir; 2009 Nov; 25(21):12471-4. PubMed ID: 19817475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.