These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 17880740)

  • 1. PocketPicker: analysis of ligand binding-sites with shape descriptors.
    Weisel M; Proschak E; Schneider G
    Chem Cent J; 2007 Mar; 1():7. PubMed ID: 17880740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design.
    Liang J; Edelsbrunner H; Woodward C
    Protein Sci; 1998 Sep; 7(9):1884-97. PubMed ID: 9761470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relating the shape of protein binding sites to binding affinity profiles: is there an association?
    Simon Z; Vigh-Smeller M; Peragovics A; Csukly G; Zahoránszky-Kohalmi G; Rauscher AA; Jelinek B; Hári P; Bitter I; Málnási-Csizmadia A; Czobor P
    BMC Struct Biol; 2010 Oct; 10():32. PubMed ID: 20923553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Form follows function: shape analysis of protein cavities for receptor-based drug design.
    Weisel M; Proschak E; Kriegl JM; Schneider G
    Proteomics; 2009 Jan; 9(2):451-9. PubMed ID: 19142949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation.
    Huang B; Schroeder M
    BMC Struct Biol; 2006 Sep; 6():19. PubMed ID: 16995956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins.
    Hendlich M; Rippmann F; Barnickel G
    J Mol Graph Model; 1997 Dec; 15(6):359-63, 389. PubMed ID: 9704298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new protein-ligand binding sites prediction method based on the integration of protein sequence conservation information.
    Dai T; Liu Q; Gao J; Cao Z; Zhu R
    BMC Bioinformatics; 2011 Dec; 12 Suppl 14(Suppl 14):S9. PubMed ID: 22373099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting protein-ligand binding site using support vector machine with protein properties.
    Wong GY; Leung FH; Ling SH
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1517-29. PubMed ID: 24407309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple knowledge-based descriptors to predict protein-ligand interactions. methodology and validation.
    Nissink JWM ; Verdonk ML; Klebe G
    J Comput Aided Mol Des; 2000 Nov; 14(8):787-803. PubMed ID: 11131970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features.
    Krivák R; Hoksza D
    J Cheminform; 2015; 7():12. PubMed ID: 25932051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A robust and efficient algorithm for the shape description of protein structures and its application in predicting ligand binding sites.
    Xie L; Bourne PE
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S9. PubMed ID: 17570152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for localizing ligand binding pockets in protein structures.
    Glaser F; Morris RJ; Najmanovich RJ; Laskowski RA; Thornton JM
    Proteins; 2006 Feb; 62(2):479-88. PubMed ID: 16304646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SVM prediction of ligand-binding sites in bacterial lipoproteins employing shape and physio-chemical descriptors.
    Kadam K; Prabhakar P; Jayaraman VK
    Protein Pept Lett; 2012 Nov; 19(11):1155-62. PubMed ID: 22587788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets.
    Cerisier N; Regad L; Triki D; Camproux AC; Petitjean M
    J Comput Biol; 2017 Nov; 24(11):1134-1137. PubMed ID: 28570103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein Binding Pocket Dynamics.
    Stank A; Kokh DB; Fuller JC; Wade RC
    Acc Chem Res; 2016 May; 49(5):809-15. PubMed ID: 27110726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction.
    Zhang Z; Li Y; Lin B; Schroeder M; Huang B
    Bioinformatics; 2011 Aug; 27(15):2083-8. PubMed ID: 21636590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MetaPocket: a meta approach to improve protein ligand binding site prediction.
    Huang B
    OMICS; 2009 Aug; 13(4):325-30. PubMed ID: 19645590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the difference in similarity measures on the comparison of ligand-binding pockets using a reduced vector representation of pockets.
    Nakamura T; Tomii K
    Biophys Physicobiol; 2016; 13():139-147. PubMed ID: 27924268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure.
    Krivák R; Hoksza D
    J Cheminform; 2018 Aug; 10(1):39. PubMed ID: 30109435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pocket-space maps to identify novel binding-site conformations in proteins.
    Craig IR; Pfleger C; Gohlke H; Essex JW; Spiegel K
    J Chem Inf Model; 2011 Oct; 51(10):2666-79. PubMed ID: 21910474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.