These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 17881038)

  • 61. Negative tension of scroll wave filaments and turbulence in three-dimensional excitable media and application in cardiac dynamics.
    Alonso S; Bär M; Panfilov AV
    Bull Math Biol; 2013 Aug; 75(8):1351-76. PubMed ID: 22829178
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A time-dependent adaptive remeshing for electrical waves of the heart.
    Belhamadia Y
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):443-52. PubMed ID: 18269979
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An electric field mechanism for transmission of excitation between myocardial cells.
    Sperelakis N
    Circ Res; 2002 Nov; 91(11):985-7. PubMed ID: 12456483
    [No Abstract]   [Full Text] [Related]  

  • 64. Existence of excitation waves for a collection of cardiomyocytes electrically coupled to fibroblasts.
    Tveito A; Lines G; Artebrant R; Skavhaug O; Maleckar MM
    Math Biosci; 2011 Apr; 230(2):79-86. PubMed ID: 21296091
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Excitation-contraction coupling between human atrial myocytes with fibroblasts and stretch activated channel current: a simulation study.
    Zhan H; Xia L
    Comput Math Methods Med; 2013; 2013():238676. PubMed ID: 24000290
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comparison of macroscopic models of excitation and force propagation in the heart.
    Sachse FB; Blümcke LG; Mohr M; Glänzel K; Häfner J; Riedel C; Seemann G; Skipa O; Werner CD; Dössel O
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():217-20. PubMed ID: 12451821
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A computer heart model incorporating anisotropic propagation. I. Model construction and simulation of normal activation.
    Lorange M; Gulrajani RM
    J Electrocardiol; 1993 Oct; 26(4):245-61. PubMed ID: 8228715
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [An efficient method for simulating ventricular electrical activity based on anatomic structure by incorporating AP model].
    Yu DK; Yang Y; Yin BS; Li BF; Nong DB; Zhou X
    Nan Fang Yi Ke Da Xue Xue Bao; 2006 May; 26(5):549-52. PubMed ID: 16762845
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Simulation of steady state and transient cardiac muscle response experiments with a Huxley-based contraction model.
    Negroni JA; Lascano EC
    J Mol Cell Cardiol; 2008 Aug; 45(2):300-12. PubMed ID: 18550079
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study.
    Kerckhoffs RC; Bovendeerd PH; Kotte JC; Prinzen FW; Smits K; Arts T
    Ann Biomed Eng; 2003 May; 31(5):536-47. PubMed ID: 12757198
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Solving the heart mechanics equations with Newton and quasi Newton methods--a comparison.
    Linge S; Lines G; Sundnes J
    Comput Methods Biomech Biomed Engin; 2005 Feb; 8(1):31-8. PubMed ID: 16154868
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Improved discretisation and linearisation of active tension in strongly coupled cardiac electro-mechanics simulations.
    Sundnes J; Wall S; Osnes H; Thorvaldsen T; McCulloch AD
    Comput Methods Biomech Biomed Engin; 2014; 17(6):604-15. PubMed ID: 22800534
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of cardiac motion on solution of the electrocardiography inverse problem.
    Jiang M; Xia L; Shou G; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):923-31. PubMed ID: 19272916
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Simulation of cardiac excitation patterns in a three-dimensional anatomical heart atlas.
    Freudenberg J; Schiemann T; Tiede U; Höhne KH
    Comput Biol Med; 2000 Jul; 30(4):191-205. PubMed ID: 10821938
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cardiac mechanical parameter calibration based on the unscented transform.
    Marchesseau S; Delingette H; Sermesant M; Rhode K; Duckett SG; Rinaldi CA; Razavi R; Ayache N
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):41-8. PubMed ID: 23286030
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A method for analyzing the stability of the resting state for a model of pacemaker cells surrounded by stable cells.
    Artebrant R; Tveito A; Lines GT
    Math Biosci Eng; 2010 Jul; 7(3):505-26. PubMed ID: 20578783
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Computational models of heart pumping efficiencies based on contraction waves in spiral elastic bands.
    Grosberg A; Gharib M
    J Theor Biol; 2009 Apr; 257(3):359-70. PubMed ID: 19109980
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Critical fronts in initiation of excitation waves.
    Idris I; Biktashev VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021906. PubMed ID: 17930064
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Simulation of the distribution of electronic potential in two- dimensional anisotropic resistive-capacitive medium].
    Veteĭkis R
    Biofizika; 1997; 42(6):1286-91. PubMed ID: 9490116
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Frank-Starling law of the heart and the cellular mechanisms of length-dependent activation.
    Konhilas JP; Irving TC; de Tombe PP
    Pflugers Arch; 2002 Dec; 445(3):305-10. PubMed ID: 12466931
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.