These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 17881304)

  • 1. Impact of cofactor on stability of bacterial (CopZ) and human (Atox1) copper chaperones.
    Hussain F; Wittung-Stafshede P
    Biochim Biophys Acta; 2007 Oct; 1774(10):1316-22. PubMed ID: 17881304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning of copper-loop flexibility in Bacillus subtilis CopZ copper chaperone: role of conserved residues.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2009 Feb; 113(7):1919-32. PubMed ID: 19170606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and dynamics of Cu(I) binding in copper chaperones Atox1 and CopZ: a computer simulation study.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2008 Apr; 112(15):4583-93. PubMed ID: 18361527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic insights into Cu(I) cluster transfer between the chaperone CopZ and its cognate Cu(I)-transporting P-type ATPase, CopA.
    Singleton C; Hearnshaw S; Zhou L; Le Brun NE; Hemmings AM
    Biochem J; 2009 Dec; 424(3):347-56. PubMed ID: 19751213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution structure of apo CopZ from Bacillus subtilis: further analysis of the changes associated with the presence of copper.
    Banci L; Bertini I; Del Conte R
    Biochemistry; 2003 Nov; 42(46):13422-8. PubMed ID: 14621987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational dynamics of metal-binding domains in Wilson disease protein: molecular insights into selective copper transfer.
    Rodriguez-Granillo A; Crespo A; Wittung-Stafshede P
    Biochemistry; 2009 Jun; 48(25):5849-63. PubMed ID: 19449859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of metal in folding and stability of copper proteins in vitro.
    Palm-Espling ME; Niemiec MS; Wittung-Stafshede P
    Biochim Biophys Acta; 2012 Sep; 1823(9):1594-603. PubMed ID: 22306006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR structure and metal interactions of the CopZ copper chaperone.
    Wimmer R; Herrmann T; Solioz M; Wüthrich K
    J Biol Chem; 1999 Aug; 274(32):22597-603. PubMed ID: 10428839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper trafficking: the solution structure of Bacillus subtilis CopZ.
    Banci L; Bertini I; Del Conte R; Markey J; Ruiz-Dueñas FJ
    Biochemistry; 2001 Dec; 40(51):15660-8. PubMed ID: 11747441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the coordination number within copper chaperones: Atox1 as case study.
    Ansbacher T; Shurki A
    J Phys Chem B; 2012 Apr; 116(15):4425-32. PubMed ID: 22480337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved residues modulate copper release in human copper chaperone Atox1.
    Hussain F; Olson JS; Wittung-Stafshede P
    Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11158-63. PubMed ID: 18685091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis.
    Banci L; Bertini I; Ciofi-Baffoni S; Del Conte R; Gonnelli L
    Biochemistry; 2003 Feb; 42(7):1939-49. PubMed ID: 12590580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states.
    Banci L; Bertini I; Ciofi-Baffoni S; D'Onofrio M; Gonnelli L; Marhuenda-Egea FC; Ruiz-Dueñas FJ
    J Mol Biol; 2002 Mar; 317(3):415-29. PubMed ID: 11922674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cisplatin binds human copper chaperone Atox1 and promotes unfolding in vitro.
    Palm ME; Weise CF; Lundin C; Wingsle G; Nygren Y; Björn E; Naredi P; Wolf-Watz M; Wittung-Stafshede P
    Proc Natl Acad Sci U S A; 2011 Apr; 108(17):6951-6. PubMed ID: 21482801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA.
    Radford DS; Kihlken MA; Borrelly GP; Harwood CR; Le Brun NE; Cavet JS
    FEMS Microbiol Lett; 2003 Mar; 220(1):105-12. PubMed ID: 12644235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and structure of a Zn2+ and [2Fe-2S]-containing copper chaperone from Archaeoglobus fulgidus.
    Sazinsky MH; LeMoine B; Orofino M; Davydov R; Bencze KZ; Stemmler TL; Hoffman BM; Argüello JM; Rosenzweig AC
    J Biol Chem; 2007 Aug; 282(35):25950-9. PubMed ID: 17609202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol-based copper handling by the copper chaperone Atox1.
    Hatori Y; Inouye S; Akagi R
    IUBMB Life; 2017 Apr; 69(4):246-254. PubMed ID: 28294521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure and backbone dynamics of the Cu(I) and apo forms of the second metal-binding domain of the Menkes protein ATP7A.
    Banci L; Bertini I; Del Conte R; D'Onofrio M; Rosato A
    Biochemistry; 2004 Mar; 43(12):3396-403. PubMed ID: 15035611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson's disease protein and regulates its catalytic activity.
    Walker JM; Tsivkovskii R; Lutsenko S
    J Biol Chem; 2002 Aug; 277(31):27953-9. PubMed ID: 12029094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The metal chaperone Atox1 regulates the activity of the human copper transporter ATP7B by modulating domain dynamics.
    Yu CH; Yang N; Bothe J; Tonelli M; Nokhrin S; Dolgova NV; Braiterman L; Lutsenko S; Dmitriev OY
    J Biol Chem; 2017 Nov; 292(44):18169-18177. PubMed ID: 28900031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.