BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17881343)

  • 21. Flowering phenology and wind-pollination efficacy of heterodichogamous Juglans mandshurica (Juglandaceae).
    Bai WN; Zeng YF; Liao WJ; Zhang DY
    Ann Bot; 2006 Aug; 98(2):397-402. PubMed ID: 16735400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Masting in wind-pollinated trees: system-specific roles of weather and pollination dynamics in driving seed production.
    Bogdziewicz M; Szymkowiak J; Kasprzyk I; Grewling Ł; Borowski Z; Borycka K; Kantorowicz W; Myszkowska D; Piotrowicz K; Ziemianin M; Pesendorfer MB
    Ecology; 2017 Oct; 98(10):2615-2625. PubMed ID: 28722149
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The evolution of flowering phenology: an example from the wind-pollinated African Restionaceae.
    Linder HP
    Ann Bot; 2020 Nov; 126(7):1141-1153. PubMed ID: 32761162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Earlier spring reduces potential for gene flow via reduced flowering synchrony across an elevational gradient.
    Rivest S; Lajoie G; Watts DA; Vellend M
    Am J Bot; 2021 Mar; 108(3):538-545. PubMed ID: 33733494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Annual variation in flowering phenology, pollination, mating system, and pollen yield in two natural populations of Schima wallichii (DC.) Korth.
    Khanduri VP; Sharma CM; Kumar KS; Ghildiyal SK
    ScientificWorldJournal; 2013; 2013():350157. PubMed ID: 24501577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pollinator-mediated selection on floral display and flowering time in the perennial herb Arabidopsis lyrata.
    Sandring S; Agren J
    Evolution; 2009 May; 63(5):1292-300. PubMed ID: 19154392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenological patterns of flowering across biogeographical regions of Europe.
    Templ B; Templ M; Filzmoser P; Lehoczky A; Bakšienè E; Fleck S; Gregow H; Hodzic S; Kalvane G; Kubin E; Palm V; Romanovskaja D; Vucˇetic V; Žust A; Czúcz B;
    Int J Biometeorol; 2017 Jul; 61(7):1347-1358. PubMed ID: 28220255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reproductive phenology of Melastomataceae species with contrasting reproductive systems: contemporary and historical drivers.
    Brito VLG; Maia FR; Silveira FAO; Fracasso CM; Lemos-Filho JP; Fernandes GW; Goldenberg R; Morellato LPC; Sazima M; Staggemeier VG
    Plant Biol (Stuttg); 2017 Sep; 19(5):806-817. PubMed ID: 28627760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inter and intraspecific variation on reproductive phenology of the Brazilian Atlantic forest Rubiaceae: ecology and phylogenetic constraints.
    SanMartin-Gajardo I; Morellato LP
    Rev Biol Trop; 2003; 51(3-4):691-8. PubMed ID: 15162775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seed germination and seedling allogamy in Rosmarinus officinalis: the costs of inbreeding.
    Garcia-Fayos P; Castellanos MC; Segarra-Moragues JG
    Plant Biol (Stuttg); 2018 May; 20(3):627-635. PubMed ID: 29283472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pollinator coupling can induce synchronized flowering in different plant species.
    Tachiki Y; Iwasa Y; Satake A
    J Theor Biol; 2010 Nov; 267(2):153-63. PubMed ID: 20800600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenology and phenotypic natural selection on the flowering time of a deceit-pollinated tropical orchid, Myrmecophila christinae.
    Parra-Tabla V; Vargas CF
    Ann Bot; 2004 Aug; 94(2):243-50. PubMed ID: 15205176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pollen and water limitation in Astragalus scaphoides, a plant that flowers in alternate years.
    Crone EE; Lesica P
    Oecologia; 2006 Nov; 150(1):40-9. PubMed ID: 16944247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pollination ecology of Isoglossa woodii, a long-lived, synchronously monocarpic herb from coastal forests in South Africa.
    Griffiths ME; Tsvuura Z; Franklin DC; Lawes MJ
    Plant Biol (Stuttg); 2010 May; 12(3):495-502. PubMed ID: 20522186
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Causes and consequences of variation in heterospecific pollen receipt in Oenothera fruticosa.
    Smith GX; Swartz MT; Spigler RB
    Am J Bot; 2021 Sep; 108(9):1612-1624. PubMed ID: 34460097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fruitful factors: what limits seed production of flowering plants in the alpine?
    Straka JR; Starzomski BM
    Oecologia; 2015 May; 178(1):249-60. PubMed ID: 25447635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flowering Phenology Adjustment and Flower Longevity in a South American Alpine Species.
    Arroyo MTK; Tamburrino Í; Pliscoff P; Robles V; Colldecarrera M; Guerrero PC
    Plants (Basel); 2021 Feb; 10(3):. PubMed ID: 33671053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured.
    Munguía-Rosas MA; Ollerton J; Parra-Tabla V; De-Nova JA
    Ecol Lett; 2011 May; 14(5):511-21. PubMed ID: 21332621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mating Opportunity Increases with Synchrony of Flowering among Years More than Synchrony within Years in a Nonmasting Perennial.
    Waananen A; Kiefer G; Ison JL; Wagenius S
    Am Nat; 2018 Sep; 192(3):379-388. PubMed ID: 30125234
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Patterns and Processes in Nocturnal and Crepuscular Pollination Services.
    Borges RM; Somanathan H; Kelber A
    Q Rev Biol; 2016 Dec; 91(4):389-418. PubMed ID: 29562117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.