BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 17881358)

  • 21. The TatC component of the twin-arginine protein translocase functions as an obligate oligomer.
    Cléon F; Habersetzer J; Alcock F; Kneuper H; Stansfeld PJ; Basit H; Wallace MI; Berks BC; Palmer T
    Mol Microbiol; 2015 Oct; 98(1):111-29. PubMed ID: 26112072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Potential Late Stage Intermediate of Twin-Arginine Dependent Protein Translocation in
    Geise H; Heidrich ES; Nikolin CS; Mehner-Breitfeld D; Brüser T
    Front Microbiol; 2019; 10():1482. PubMed ID: 31354642
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrate-dependent assembly of the Tat translocase as observed in live Escherichia coli cells.
    Rose P; Fröbel J; Graumann PL; Müller M
    PLoS One; 2013; 8(8):e69488. PubMed ID: 23936332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The entire N-terminal half of TatC is involved in twin-arginine precursor binding.
    Holzapfel E; Eisner G; Alami M; Barrett CM; Buchanan G; Lüke I; Betton JM; Robinson C; Palmer T; Moser M; Müller M
    Biochemistry; 2007 Mar; 46(10):2892-8. PubMed ID: 17300178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TatA and TatB generate a hydrophobic mismatch important for the function and assembly of the Tat translocon in Escherichia coli.
    Mehner-Breitfeld D; Ringel MT; Tichy DA; Endter LJ; Stroh KS; Lünsdorf H; Risselada HJ; Brüser T
    J Biol Chem; 2022 Sep; 298(9):102236. PubMed ID: 35809643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A minimal Tat system from a gram-positive organism: a bifunctional TatA subunit participates in discrete TatAC and TatA complexes.
    Barnett JP; Eijlander RT; Kuipers OP; Robinson C
    J Biol Chem; 2008 Feb; 283(5):2534-42. PubMed ID: 18029357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of TatA paralog, TatE, suggests a structurally homogeneous form of Tat protein translocase that transports folded proteins of differing diameter.
    Baglieri J; Beck D; Vasisht N; Smith CJ; Robinson C
    J Biol Chem; 2012 Mar; 287(10):7335-44. PubMed ID: 22190680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substrate-triggered position switching of TatA and TatB during Tat transport in
    Habersetzer J; Moore K; Cherry J; Buchanan G; Stansfeld PJ; Palmer T
    Open Biol; 2017 Aug; 7(8):. PubMed ID: 28814647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Twin-arginine-dependent translocation of folded proteins.
    Fröbel J; Rose P; Müller M
    Philos Trans R Soc Lond B Biol Sci; 2012 Apr; 367(1592):1029-46. PubMed ID: 22411976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Salt sensitivity of minimal twin arginine translocases.
    van der Ploeg R; Barnett JP; Vasisht N; Goosens VJ; Pöther DC; Robinson C; van Dijl JM
    J Biol Chem; 2011 Dec; 286(51):43759-43770. PubMed ID: 22041895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visualizing interactions along the Escherichia coli twin-arginine translocation pathway using protein fragment complementation.
    Kostecki JS; Li H; Turner RJ; DeLisa MP
    PLoS One; 2010 Feb; 5(2):e9225. PubMed ID: 20169075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TatBC-independent TatA/Tat substrate interactions contribute to transport efficiency.
    Taubert J; Hou B; Risselada HJ; Mehner D; Lünsdorf H; Grubmüller H; Brüser T
    PLoS One; 2015; 10(3):e0119761. PubMed ID: 25774531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TatE as a Regular Constituent of Bacterial Twin-arginine Protein Translocases.
    Eimer E; Fröbel J; Blümmel AS; Müller M
    J Biol Chem; 2015 Dec; 290(49):29281-9. PubMed ID: 26483541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recombinant expression of tatABC and tatAC results in the formation of interacting cytoplasmic TatA tubes in Escherichia coli.
    Berthelmann F; Mehner D; Richter S; Lindenstrauss U; Lünsdorf H; Hause G; Brüser T
    J Biol Chem; 2008 Sep; 283(37):25281-25289. PubMed ID: 18644791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural organization of the twin-arginine translocation system in Streptomyces lividans.
    De Keersmaeker S; Van Mellaert L; Schaerlaekens K; Van Dessel W; Vrancken K; Lammertyn E; Anné J; Geukens N
    FEBS Lett; 2005 Jan; 579(3):797-802. PubMed ID: 15670849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli.
    Bolhuis A; Mathers JE; Thomas JD; Barrett CM; Robinson C
    J Biol Chem; 2001 Jun; 276(23):20213-9. PubMed ID: 11279240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Affinity of TatCd for TatAd elucidates its receptor function in the Bacillus subtilis twin arginine translocation (Tat) translocase system.
    Schreiber S; Stengel R; Westermann M; Volkmer-Engert R; Pop OI; Müller JP
    J Biol Chem; 2006 Jul; 281(29):19977-84. PubMed ID: 16698798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic evidence for a TatC dimer at the core of the Escherichia coli twin arginine (Tat) protein translocase.
    Maldonado B; Buchanan G; Müller M; Berks BC; Palmer T
    J Mol Microbiol Biotechnol; 2011; 20(3):168-75. PubMed ID: 21709427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TatA complexes exhibit a marked change in organisation in response to expression of the TatBC complex.
    Smith SM; Yarwood A; Fleck RA; Robinson C; Smith CJ
    Biochem J; 2017 Apr; 474(9):1495-1508. PubMed ID: 28280110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The twin-arginine translocation (Tat) protein export pathway.
    Palmer T; Berks BC
    Nat Rev Microbiol; 2012 Jun; 10(7):483-96. PubMed ID: 22683878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.