BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 17881514)

  • 1. Gray matter differences correlate with spontaneous strategies in a human virtual navigation task.
    Bohbot VD; Lerch J; Thorndycraft B; Iaria G; Zijdenbos AP
    J Neurosci; 2007 Sep; 27(38):10078-83. PubMed ID: 17881514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased functional magnetic resonance imaging activity in the hippocampus in favor of the caudate nucleus in older adults tested in a virtual navigation task.
    Konishi K; Etchamendy N; Roy S; Marighetto A; Rajah N; Bohbot VD
    Hippocampus; 2013 Nov; 23(11):1005-14. PubMed ID: 23929534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies.
    Dahmani L; Bohbot VD
    Neurobiol Learn Mem; 2015 Jan; 117():42-50. PubMed ID: 25038426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The brain-derived neurotrophic factor Val66Met polymorphism is associated with reduced functional magnetic resonance imaging activity in the hippocampus and increased use of caudate nucleus-dependent strategies in a human virtual navigation task.
    Banner H; Bhat V; Etchamendy N; Joober R; Bohbot VD
    Eur J Neurosci; 2011 Mar; 33(5):968-77. PubMed ID: 21255124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous navigational strategies and performance in the virtual town.
    Etchamendy N; Bohbot VD
    Hippocampus; 2007; 17(8):595-9. PubMed ID: 17546682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extrahippocampal contributions to age differences in human spatial navigation.
    Moffat SD; Kennedy KM; Rodrigue KM; Raz N
    Cereb Cortex; 2007 Jun; 17(6):1274-82. PubMed ID: 16857855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative correlation between grey matter in the hippocampus and caudate nucleus in healthy aging.
    Sodums DJ; Bohbot VD
    Hippocampus; 2020 Aug; 30(8):892-908. PubMed ID: 32384195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caudate nucleus-dependent navigational strategies are associated with increased use of addictive drugs.
    Bohbot VD; Del Balso D; Conrad K; Konishi K; Leyton M
    Hippocampus; 2013 Nov; 23(11):973-84. PubMed ID: 23939925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial navigational strategies correlate with gray matter in the hippocampus of healthy older adults tested in a virtual maze.
    Konishi K; Bohbot VD
    Front Aging Neurosci; 2013; 5():1. PubMed ID: 23430962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice.
    Iaria G; Petrides M; Dagher A; Pike B; Bohbot VD
    J Neurosci; 2003 Jul; 23(13):5945-52. PubMed ID: 12843299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caudate nucleus-dependent navigation strategies are associated with increased risk-taking and set-shifting behavior.
    Aumont É; Blanchette CA; Bohbot VD; West GL
    Learn Mem; 2019 Apr; 26(4):101-108. PubMed ID: 30898972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual water maze learning in human increases functional connectivity between posterior hippocampus and dorsal caudate.
    Woolley DG; Mantini D; Coxon JP; D'Hooge R; Swinnen SP; Wenderoth N
    Hum Brain Mapp; 2015 Apr; 36(4):1265-77. PubMed ID: 25418860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a virtual human analog of a rodent relational memory task: a study of aging and fMRI in young adults.
    Etchamendy N; Konishi K; Pike GB; Marighetto A; Bohbot VD
    Hippocampus; 2012 Apr; 22(4):869-80. PubMed ID: 21656872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual Differences in Human Path Integration Abilities Correlate with Gray Matter Volume in Retrosplenial Cortex, Hippocampus, and Medial Prefrontal Cortex.
    Chrastil ER; Sherrill KR; Aselcioglu I; Hasselmo ME; Stern CE
    eNeuro; 2017; 4(2):. PubMed ID: 28451633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective deficit in spatial memory strategies contrast to intact response strategies in patients with schizophrenia spectrum disorders tested in a virtual navigation task.
    Wilkins LK; Girard TA; Konishi K; King M; Herdman KA; King J; Christensen B; Bohbot VD
    Hippocampus; 2013 Nov; 23(11):1015-24. PubMed ID: 23939937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caudate nucleus-dependent response strategies in a virtual navigation task are associated with lower basal cortisol and impaired episodic memory.
    Bohbot VD; Gupta M; Banner H; Dahmani L
    Neurobiol Learn Mem; 2011 Sep; 96(2):173-80. PubMed ID: 21539927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gray and white matter correlates of navigational ability in humans.
    Wegman J; Fonteijn HM; van Ekert J; Tyborowska A; Jansen C; Janzen G
    Hum Brain Mapp; 2014 Jun; 35(6):2561-72. PubMed ID: 24038667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial memory deficits in a virtual radial arm maze in amnesic participants with hippocampal damage.
    Goodrich-Hunsaker NJ; Hopkins RO
    Behav Neurosci; 2010 Jun; 124(3):405-13. PubMed ID: 20528085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A preliminary study of sex differences in brain activation during a spatial navigation task in healthy adults.
    Sneider JT; Sava S; Rogowska J; Yurgelun-Todd DA
    Percept Mot Skills; 2011 Oct; 113(2):461-80. PubMed ID: 22185061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological evidence for enhanced attentional deployment in spatial learners.
    Drisdelle BL; Konishi K; Diarra M; Bohbot VD; Jolicoeur P; West GL
    Exp Brain Res; 2017 May; 235(5):1387-1395. PubMed ID: 28229169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.