These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
737 related articles for article (PubMed ID: 17881561)
1. Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. Nakamoto M; Nalavadi V; Epstein MP; Narayanan U; Bassell GJ; Warren ST Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15537-42. PubMed ID: 17881561 [TBL] [Abstract][Full Text] [Related]
2. Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. Gross C; Nakamoto M; Yao X; Chan CB; Yim SY; Ye K; Warren ST; Bassell GJ J Neurosci; 2010 Aug; 30(32):10624-38. PubMed ID: 20702695 [TBL] [Abstract][Full Text] [Related]
3. Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. Muddashetty RS; Kelić S; Gross C; Xu M; Bassell GJ J Neurosci; 2007 May; 27(20):5338-48. PubMed ID: 17507556 [TBL] [Abstract][Full Text] [Related]
4. Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. Antar LN; Afroz R; Dictenberg JB; Carroll RC; Bassell GJ J Neurosci; 2004 Mar; 24(11):2648-55. PubMed ID: 15028757 [TBL] [Abstract][Full Text] [Related]
6. microRNAs and Fragile X Syndrome. Lin SL Adv Exp Med Biol; 2015; 888():107-21. PubMed ID: 26663181 [TBL] [Abstract][Full Text] [Related]
7. Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome. Nosyreva ED; Huber KM J Neurophysiol; 2006 May; 95(5):3291-5. PubMed ID: 16452252 [TBL] [Abstract][Full Text] [Related]
8. Characterization and reversal of synaptic defects in the amygdala in a mouse model of fragile X syndrome. Suvrathan A; Hoeffer CA; Wong H; Klann E; Chattarji S Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11591-6. PubMed ID: 20534533 [TBL] [Abstract][Full Text] [Related]
9. Roles of fragile X mental retardation protein in dopaminergic stimulation-induced synapse-associated protein synthesis and subsequent alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) receptor internalization. Wang H; Kim SS; Zhuo M J Biol Chem; 2010 Jul; 285(28):21888-901. PubMed ID: 20457613 [TBL] [Abstract][Full Text] [Related]
10. Metabotropic glutamate receptors and fragile x mental retardation protein: partners in translational regulation at the synapse. Ronesi JA; Huber KM Sci Signal; 2008 Feb; 1(5):pe6. PubMed ID: 18272470 [TBL] [Abstract][Full Text] [Related]
11. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. Osterweil EK; Krueger DD; Reinhold K; Bear MF J Neurosci; 2010 Nov; 30(46):15616-27. PubMed ID: 21084617 [TBL] [Abstract][Full Text] [Related]
12. The fragile X mental retardation protein and group I metabotropic glutamate receptors regulate levels of mRNA granules in brain. Aschrafi A; Cunningham BA; Edelman GM; Vanderklish PW Proc Natl Acad Sci U S A; 2005 Feb; 102(6):2180-5. PubMed ID: 15684045 [TBL] [Abstract][Full Text] [Related]
13. Disruption of GpI mGluR-Dependent Cav2.3 Translation in a Mouse Model of Fragile X Syndrome. Gray EE; Murphy JG; Liu Y; Trang I; Tabor GT; Lin L; Hoffman DA J Neurosci; 2019 Sep; 39(38):7453-7464. PubMed ID: 31350260 [TBL] [Abstract][Full Text] [Related]
14. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Bassell GJ; Warren ST Neuron; 2008 Oct; 60(2):201-14. PubMed ID: 18957214 [TBL] [Abstract][Full Text] [Related]
15. Absence of metabotropic glutamate receptor-mediated plasticity in the neocortex of fragile X mice. Wilson BM; Cox CL Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2454-9. PubMed ID: 17287348 [TBL] [Abstract][Full Text] [Related]
16. Astroglial FMRP-dependent translational down-regulation of mGluR5 underlies glutamate transporter GLT1 dysregulation in the fragile X mouse. Higashimori H; Morel L; Huth J; Lindemann L; Dulla C; Taylor A; Freeman M; Yang Y Hum Mol Genet; 2013 May; 22(10):2041-54. PubMed ID: 23396537 [TBL] [Abstract][Full Text] [Related]
17. The fragile X mental retardation protein is required for type-I metabotropic glutamate receptor-dependent translation of PSD-95. Todd PK; Mack KJ; Malter JS Proc Natl Acad Sci U S A; 2003 Nov; 100(24):14374-8. PubMed ID: 14614133 [TBL] [Abstract][Full Text] [Related]
18. Fragile X Mental Retardation Protein and Dendritic Local Translation of the Alpha Subunit of the Calcium/Calmodulin-Dependent Kinase II Messenger RNA Are Required for the Structural Plasticity Underlying Olfactory Learning. Daroles L; Gribaudo S; Doulazmi M; Scotto-Lomassese S; Dubacq C; Mandairon N; Greer CA; Didier A; Trembleau A; Caillé I Biol Psychiatry; 2016 Jul; 80(2):149-159. PubMed ID: 26372002 [TBL] [Abstract][Full Text] [Related]
19. Fragile X mental retardation protein regulates protein expression and mRNA translation of the potassium channel Kv4.2. Gross C; Yao X; Pong DL; Jeromin A; Bassell GJ J Neurosci; 2011 Apr; 31(15):5693-8. PubMed ID: 21490210 [TBL] [Abstract][Full Text] [Related]
20. BDNF in fragile X syndrome. Castrén ML; Castrén E Neuropharmacology; 2014 Jan; 76 Pt C():729-36. PubMed ID: 23727436 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]