These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 17881566)
61. Neuroprotection by tosyl-polyamine derivatives through the inhibition of ionotropic glutamate receptors. Masuko T; Namiki R; Nemoto Y; Miyake M; Kizawa Y; Suzuki T; Kashiwagi K; Igarashi K; Kusama T J Pharmacol Exp Ther; 2009 Nov; 331(2):522-30. PubMed ID: 19644042 [TBL] [Abstract][Full Text] [Related]
62. Structural basis of NR2B-selective antagonist recognition by N-methyl-D-aspartate receptors. Mony L; Krzaczkowski L; Leonetti M; Le Goff A; Alarcon K; Neyton J; Bertrand HO; Acher F; Paoletti P Mol Pharmacol; 2009 Jan; 75(1):60-74. PubMed ID: 18923063 [TBL] [Abstract][Full Text] [Related]
63. Characterization of ionotropic glutamate receptors in insect neuro-muscular junction. Fedorova IM; Magazanik LG; Tikhonov DB Comp Biochem Physiol C Toxicol Pharmacol; 2009 Apr; 149(3):275-80. PubMed ID: 18723120 [TBL] [Abstract][Full Text] [Related]
64. Mechanism of inhibition of the GluR2 AMPA receptor channel opening by 2,3-benzodiazepine derivatives. Ritz M; Micale N; Grasso S; Niu L Biochemistry; 2008 Jan; 47(3):1061-9. PubMed ID: 18161947 [TBL] [Abstract][Full Text] [Related]
65. Linking supply to demand: the neuronal monocarboxylate transporter MCT2 and the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid receptor GluR2/3 subunit are associated in a common trafficking process. Pierre K; Chatton JY; Parent A; Repond C; Gardoni F; Di Luca M; Pellerin L Eur J Neurosci; 2009 May; 29(10):1951-63. PubMed ID: 19453627 [TBL] [Abstract][Full Text] [Related]
66. Mechanisms of substrate transport-induced clustering of a glial glutamate transporter GLT-1 in astroglial-neuronal cultures. Nakagawa T; Otsubo Y; Yatani Y; Shirakawa H; Kaneko S Eur J Neurosci; 2008 Nov; 28(9):1719-30. PubMed ID: 18973588 [TBL] [Abstract][Full Text] [Related]
67. C-terminal truncation affects kinetic properties of GluR1 receptors. Suzuki E; Kessler M; Arai AC Mol Cell Neurosci; 2005 May; 29(1):1-10. PubMed ID: 15866042 [TBL] [Abstract][Full Text] [Related]
68. RNA aptamers selected against the GluR2 glutamate receptor channel. Huang Z; Pei W; Jayaseelan S; Shi H; Niu L Biochemistry; 2007 Nov; 46(44):12648-55. PubMed ID: 17929944 [TBL] [Abstract][Full Text] [Related]
69. Ligand--protein interactions in the glutamate receptor. Jayaraman V; Keesey R; Madden DR Biochemistry; 2000 Aug; 39(30):8693-7. PubMed ID: 10913279 [TBL] [Abstract][Full Text] [Related]
70. Distinct structural features of cyclothiazide are responsible for effects on peak current amplitude and desensitization kinetics at iGluR2. Hald H; Ahring PK; Timmermann DB; Liljefors T; Gajhede M; Kastrup JS J Mol Biol; 2009 Sep; 391(5):906-17. PubMed ID: 19591837 [TBL] [Abstract][Full Text] [Related]
71. Kaitocephalin antagonism of glutamate receptors expressed in Xenopus oocytes. Limon A; Reyes-Ruiz JM; Vaswani RG; Chamberlin AR; Miledi R ACS Chem Neurosci; 2010 Mar; 1(3):175-181. PubMed ID: 20436943 [TBL] [Abstract][Full Text] [Related]
72. Straight-chain alcohols exhibit a cutoff in potency for the inhibition of recombinant glutamate receptor subunits. Akinshola BE Br J Pharmacol; 2001 Jul; 133(5):651-8. PubMed ID: 11429388 [TBL] [Abstract][Full Text] [Related]
73. AMPA receptors in the medial amygdala are critical for establishing a neuroendocrine memory in the female rat. Oberlander JG; Lin AW; Man HY; Erskine MS Eur J Neurosci; 2009 Jan; 29(1):146-60. PubMed ID: 19120442 [TBL] [Abstract][Full Text] [Related]
74. AMPA receptor-mediated cell death is reduced by docosahexaenoic acid but not by eicosapentaenoic acid in area CA1 of hippocampal slice cultures. Ménard C; Patenaude C; Gagné AM; Massicotte G J Neurosci Res; 2009 Mar; 87(4):876-86. PubMed ID: 18951489 [TBL] [Abstract][Full Text] [Related]
75. AFM observation of single, functioning ionotropic glutamate receptors reconstituted in lipid bilayers. Kasai N; Ramanujan CS; Fujimoto I; Shimada A; Ryan JF; Torimitsu K Biochim Biophys Acta; 2010 Jul; 1800(7):655-61. PubMed ID: 20307628 [TBL] [Abstract][Full Text] [Related]
76. Slow oscillation of membrane currents mediated by glutamatergic inputs of rat somatosensory cortical neurons: in vivo patch-clamp analysis. Doi A; Mizuno M; Katafuchi T; Furue H; Koga K; Yoshimura M Eur J Neurosci; 2007 Nov; 26(9):2565-75. PubMed ID: 17949423 [TBL] [Abstract][Full Text] [Related]
77. Autoantibodies against an extracellular peptide of the GluR3 subtype of AMPA receptors activate both homomeric and heteromeric AMPA receptor channels. Cohen-Kashi Malina K; Ganor Y; Levite M; Teichberg VI Neurochem Res; 2006 Oct; 31(10):1181-90. PubMed ID: 16967334 [TBL] [Abstract][Full Text] [Related]
78. Repeated 4-aminopyridine induced seizures diminish the efficacy of glutamatergic transmission in the neocortex. Világi I; Dobó E; Borbély S; Czégé D; Molnár E; Mihály A Exp Neurol; 2009 Sep; 219(1):136-45. PubMed ID: 19445932 [TBL] [Abstract][Full Text] [Related]
79. Comparative analysis of the pharmacology of GluR1 in complex with transmembrane AMPA receptor regulatory proteins gamma2, gamma3, gamma4, and gamma8. Kott S; Sager C; Tapken D; Werner M; Hollmann M Neuroscience; 2009 Jan; 158(1):78-88. PubMed ID: 18304748 [TBL] [Abstract][Full Text] [Related]
80. Pharmacological characterization of some selected 4,5-dihydro-4-oxo-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylates and 3-hydroxyquinazoline-2,4-diones as (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)-propionic acid receptor antagonists. Catarzi D; Lenzi O; Colotta V; Varano F; Poli D; Filacchioni G; Lingenhöhl K; Ofner S Chem Pharm Bull (Tokyo); 2010 Jul; 58(7):908-11. PubMed ID: 20606335 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]