These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 17881796)

  • 1. A rapid, high sensitivity technique for measuring arsenic in skin phantoms using a portable x-ray tube and detector.
    Fleming DE; Gherase MR
    Phys Med Biol; 2007 Oct; 52(19):N459-65. PubMed ID: 17881796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous assessment of arsenic and selenium in human nail phantoms using a portable x-ray tube and a detector.
    Roy CW; Gherase MR; Fleming DE
    Phys Med Biol; 2010 Mar; 55(6):N151-9. PubMed ID: 20182007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous detection of As and Se in polyester resin skin phantoms.
    Gherase MR; Vallee ME; Fleming DE
    Appl Radiat Isot; 2010; 68(4-5):743-5. PubMed ID: 19819714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of lead in bone phantoms and arsenic in soft tissue phantoms using synchrotron radiation and a portable x-ray fluorescence system.
    Groskopf C; Bennett SR; Gherase MR; Fleming DEB
    Physiol Meas; 2017 Feb; 38(2):374-386. PubMed ID: 28134135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of measuring arsenic and selenium in human skin using in vivo x-ray fluorescence (XRF)--a comparison of methods.
    Shehab H; Desouza ED; O'Meara J; Pejović-Milić A; Chettle DR; Fleming DE; McNeill FE
    Physiol Meas; 2016 Jan; 37(1):145-61. PubMed ID: 26683849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method detection limit for potential in vivo arsenic measurements with a 50 W x-ray tube.
    Studinski RC; McNeill FE; O'Meara JM; Chettle DR
    Phys Med Biol; 2006 Nov; 51(21):N381-7. PubMed ID: 17047256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The radiation dose from a proposed measurement of arsenic and selenium in human skin.
    Gherase MR; Mader JE; Fleming DE
    Phys Med Biol; 2010 Sep; 55(18):5499-514. PubMed ID: 20798460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A calibration method for proposed XRF measurements of arsenic and selenium in nail clippings.
    Gherase MR; Fleming DE
    Phys Med Biol; 2011 Oct; 56(20):N215-25. PubMed ID: 21937772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time monitoring of arsenic filtration by granular ferric hydroxide.
    Fleming DE; Eddy IS; Gherase MR; Gibbons MK; Gagnon GA
    Appl Radiat Isot; 2010; 68(4-5):821-4. PubMed ID: 19850486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance comparison of two Olympus InnovX handheld x-ray analyzers for feasibility of measuring arsenic in skin in vivo - Alpha and Delta models.
    Desouza ED; Gherase MR; Fleming DE; Chettle DR; O'Meara JM; McNeill FE
    Appl Radiat Isot; 2017 May; 123():82-93. PubMed ID: 28260610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing arsenic and selenium in a single nail clipping using portable X-ray fluorescence.
    Fleming DE; Nader MN; Foran KA; Groskopf C; Reno MC; Ware CS; Tehrani M; Guimarães D; Parsons PJ
    Appl Radiat Isot; 2017 Feb; 120():1-6. PubMed ID: 27889549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom.
    Birnbaum BA; Hindman N; Lee J; Babb JS
    Radiology; 2007 Jan; 242(1):109-19. PubMed ID: 17185663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing arsenic in human toenail clippings using portable X-ray fluorescence.
    Fleming DEB; Crook SL; Evans CT; Nader MN; Atia M; Hicks JMT; Sweeney E; McFarlane CR; Kim JS; Keltie E; Adisesh A
    Appl Radiat Isot; 2021 Jan; 167():109491. PubMed ID: 33121893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of a method detection limit for an in vivo XRF arsenic detection system.
    Studinski RC; McNeill FE; Chettle DR; O'Meara JM
    Phys Med Biol; 2005 Feb; 50(3):521-30. PubMed ID: 15773727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phantom for verification of dwell position and time of a high dose rate brachytherapy source.
    Madebo M; Pillainayagam J; Kron T; Franich R
    Australas Phys Eng Sci Med; 2012 Sep; 35(3):335-9. PubMed ID: 22972480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First experiments on the Australian Synchrotron Imaging and Medical beamline, including investigations of the effective source size in respect of X-ray imaging.
    Stevenson AW; Mayo SC; Häusermann D; Maksimenko A; Garrett RF; Hall CJ; Wilkins SW; Lewis RA; Myers DE
    J Synchrotron Radiat; 2010 Jan; 17(1):75-80. PubMed ID: 20029114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity study of proton radiography and comparison with kV and MV x-ray imaging using GEANT4 Monte Carlo simulations.
    Depauw N; Seco J
    Phys Med Biol; 2011 Apr; 56(8):2407-21. PubMed ID: 21427482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic noise in CT detectors: Impact on image noise and artifacts.
    Duan X; Wang J; Leng S; Schmidt B; Allmendinger T; Grant K; Flohr T; McCollough CH
    AJR Am J Roentgenol; 2013 Oct; 201(4):W626-32. PubMed ID: 24059402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-resolved computed tomography: first experimental results.
    Shikhaliev PM
    Phys Med Biol; 2008 Oct; 53(20):5595-613. PubMed ID: 18799830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a compact x-ray particle image velocimetry for measuring opaque flows.
    Lee SJ; Kim GB; Yim DH; Jung SY
    Rev Sci Instrum; 2009 Mar; 80(3):033706. PubMed ID: 19334926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.