These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 17881804)
1. Spectral ratio method to estimate broadband ultrasound attenuation of cortical bones in vitro using multiple reflections. Zheng R; Le LH; Sacchi MD; Ta D; Lou E Phys Med Biol; 2007 Oct; 52(19):5855-69. PubMed ID: 17881804 [TBL] [Abstract][Full Text] [Related]
2. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range. Hakulinen MA; Day JS; Töyräs J; Timonen M; Kröger H; Weinans H; Kiviranta I; Jurvelin JS Phys Med Biol; 2005 Apr; 50(8):1629-42. PubMed ID: 15815086 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous estimation of cortical bone thickness and acoustic wave velocity using a multivariable optimization approach: Bone phantom and in-vitro study. Tasinkevych Y; Podhajecki J; Falińska K; Litniewski J Ultrasonics; 2016 Feb; 65():105-12. PubMed ID: 26522955 [TBL] [Abstract][Full Text] [Related]
4. Broadband ultrasound attenuation measurement of long bone using peak frequency of the echoes. Zheng R; Le LH; Sacchi MD; Lou E IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):396-9. PubMed ID: 19251527 [TBL] [Abstract][Full Text] [Related]
5. Model-based estimation of quantitative ultrasound variables at the proximal femur. Dencks S; Barkmann R; Padilla F; Laugier P; Schmitz G; Glüer CC IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1304-15. PubMed ID: 18599418 [TBL] [Abstract][Full Text] [Related]
6. Distribution of longitudinal wave properties in bovine cortical bone in vitro. Yamato Y; Matsukawa M; Otani T; Yamazaki K; Nagano A Ultrasonics; 2006 Dec; 44 Suppl 1():e233-7. PubMed ID: 16860358 [TBL] [Abstract][Full Text] [Related]
7. Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone. Sasso M; Haïat G; Yamato Y; Naili S; Matsukawa M J Biomech; 2008; 41(2):347-55. PubMed ID: 18028934 [TBL] [Abstract][Full Text] [Related]
8. Influence of the precision of spectral backscatter measurements on the estimation of scatterers size in cancellous bone. Padilla F; Jenson F; Laugier P Ultrasonics; 2006 Dec; 44 Suppl 1():e57-60. PubMed ID: 16904147 [TBL] [Abstract][Full Text] [Related]
9. Attenuation in trabecular bone: A comparison between numerical simulation and experimental results in human femur. Bossy E; Laugier P; Peyrin F; Padilla F J Acoust Soc Am; 2007 Oct; 122(4):2469-75. PubMed ID: 17902882 [TBL] [Abstract][Full Text] [Related]
10. Identification and analysis of multimode guided waves in tibia cortical bone. Ta DA; Huang K; Wang WQ; Wang YY; Le LH Ultrasonics; 2006 Dec; 44 Suppl 1():e279-84. PubMed ID: 16846626 [TBL] [Abstract][Full Text] [Related]
11. Ultrasonic backscatter from cancellous bone: the apparent backscatter transfer function. Hoffmeister BK; Mcpherson JA; Smathers MR; Spinolo PL; Sellers ME IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2115-25. PubMed ID: 26683412 [TBL] [Abstract][Full Text] [Related]
12. Frequency dependence of ultrasonic attenuation in bovine cortical bone: an in vitro study. Sasso M; Haïat G; Yamato Y; Naili S; Matsukawa M Ultrasound Med Biol; 2007 Dec; 33(12):1933-42. PubMed ID: 17681677 [TBL] [Abstract][Full Text] [Related]
13. Finite element simulation of ultrasound propagation in bone for quantitative ultrasound toward the diagnosis of osteoporosis. Kim SH; Suh HS; Cho MH; Lee SY; Kim TS Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():436-9. PubMed ID: 19964933 [TBL] [Abstract][Full Text] [Related]
14. Effects of frequency-dependent attenuation and velocity dispersion on in vitro ultrasound velocity measurements in intact human femur specimens. Haïat G; Padilla F; Cleveland RO; Laugier P IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):39-51. PubMed ID: 16471431 [TBL] [Abstract][Full Text] [Related]
15. Improving broadband ultrasound attenuation assessment in cancellous bone by mitigating the influence of cortical bone: Phantom and in-vitro study. Tasinkevych Y; Falińska K; Lewin PA; Litniewski J Ultrasonics; 2019 Apr; 94():382-390. PubMed ID: 30001852 [TBL] [Abstract][Full Text] [Related]
16. Effects of phase cancellation and receiver aperture size on broadband ultrasonic attenuation for trabecular bone in vitro. Cheng J; Serra-Hsu F; Tian Y; Lin W; Qin YX Ultrasound Med Biol; 2011 Dec; 37(12):2116-25. PubMed ID: 22033134 [TBL] [Abstract][Full Text] [Related]
17. The dependence of broadband ultrasound attenuation on phase interference in thin plates of variable thickness and curvature: a comparison of experimental measurement and computer simulation. Alomari AH; Wille ML; Langton CM Proc Inst Mech Eng H; 2018 May; 232(5):468-478. PubMed ID: 29589802 [TBL] [Abstract][Full Text] [Related]
18. Estimation of ultrasound attenuation from broadband echo-signals using bandpass filtering. Kim H; Zagzebski JA; Varghese T IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):1153-9. PubMed ID: 18519224 [TBL] [Abstract][Full Text] [Related]
19. Spatial variation of acoustic properties is related with mechanical properties of trabecular bone. Riekkinen O; Hakulinen MA; Töyräs J; Jurvelin JS Phys Med Biol; 2007 Dec; 52(23):6961-8. PubMed ID: 18029987 [TBL] [Abstract][Full Text] [Related]
20. The effect of phase cancellation on estimates of broadband ultrasound attenuation and backscatter coefficient in human calcaneus in vitro. Wear KA IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):384-90. PubMed ID: 18334344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]