BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 17882219)

  • 61. The clam embryo protein cyclin A induces entry into M phase and the resumption of meiosis in Xenopus oocytes.
    Swenson KI; Farrell KM; Ruderman JV
    Cell; 1986 Dec; 47(6):861-70. PubMed ID: 2946420
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Shaggy/glycogen synthase kinase 3β and phosphorylation of Sarah/regulator of calcineurin are essential for completion of Drosophila female meiosis.
    Takeo S; Swanson SK; Nandanan K; Nakai Y; Aigaki T; Washburn MP; Florens L; Hawley RS
    Proc Natl Acad Sci U S A; 2012 Apr; 109(17):6382-9. PubMed ID: 22421435
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Phosphorylation changes associated with the early cell cycle in Xenopus eggs.
    Karsenti E; Bravo R; Kirschner M
    Dev Biol; 1987 Feb; 119(2):442-53. PubMed ID: 3803713
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Parallel pathways of cell cycle control during Xenopus egg activation.
    Bement WM; Capco DG
    Proc Natl Acad Sci U S A; 1991 Jun; 88(12):5172-6. PubMed ID: 2052598
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phosphatase 1 nuclear targeting subunit is an essential regulator of M-phase entry, maintenance, and exit.
    Fisher LA; Wang L; Wu L; Peng A
    J Biol Chem; 2014 Aug; 289(34):23745-52. PubMed ID: 25002584
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Characterization of p96h2bk: immunoreaction with an anti-Erk(extracellular-signal-regulated kinase) peptide antibody and activity in Xenopus oocytes and eggs.
    Chen DH; Chen CT; Zhang Y; Liu MA; Campos-Gonzalez R; Pan BT
    Biochem J; 1998 Oct; 335 ( Pt 1)(Pt 1):43-50. PubMed ID: 9742211
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mechanisms of Xenopus oocyte maturation.
    Murakami MS; Vande Woude GF
    Methods Enzymol; 1997; 283():584-600. PubMed ID: 9251050
    [No Abstract]   [Full Text] [Related]  

  • 68. Multiple roles for protein phosphatase 1 in regulating the Xenopus early embryonic cell cycle.
    Walker DH; DePaoli-Roach AA; Maller JL
    Mol Biol Cell; 1992 Jun; 3(6):687-98. PubMed ID: 1323352
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Calcineurin-dependent Protein Phosphorylation Changes During Egg Activation in
    Zhang Z; Ahmed-Braimah YH; Goldberg ML; Wolfner MF
    Mol Cell Proteomics; 2019 Mar; 18(Suppl 1):S145-S158. PubMed ID: 30478224
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Proteomics of phosphorylation and protein dynamics during fertilization and meiotic exit in the
    Presler M; Van Itallie E; Klein AM; Kunz R; Coughlin ML; Peshkin L; Gygi SP; Wühr M; Kirschner MW
    Proc Natl Acad Sci U S A; 2017 Dec; 114(50):E10838-E10847. PubMed ID: 29183978
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ca2+ is involved through type II calmodulin-dependent protein kinase in cyclin degradation and exit from metaphase.
    Lorca T; Abrieu A; Means A; Dorée M
    Biochim Biophys Acta; 1994 Sep; 1223(3):325-32. PubMed ID: 7918666
    [No Abstract]   [Full Text] [Related]  

  • 72. Studying fertilization in cell-free extracts: focusing on membrane/lipid raft functions and proteomics.
    Sato K; Yoshino K; Tokmakov AA; Iwasaki T; Yonezawa K; Fukami Y
    Methods Mol Biol; 2006; 322():395-411. PubMed ID: 16739739
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Studies on fertilization in the teleost IV. Effects of aphidicolin and camptothecin on chromosome formation in fertilized medaka eggs.
    Iwamatsu T; Shibata Y; Hara O; Yamashita M; Ikegami S
    Dev Growth Differ; 2002 Aug; 44(4):293-302. PubMed ID: 12175364
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Phospho-regulation pathways during egg activation in Drosophila melanogaster.
    Krauchunas AR; Sackton KL; Wolfner MF
    Genetics; 2013 Sep; 195(1):171-80. PubMed ID: 23792954
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Calcium and mitosis.
    Whitaker M
    Prog Cell Cycle Res; 1997; 3():261-9. PubMed ID: 9552421
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cyclic regulation of cytokinesis in amphibian eggs.
    Aimar C; Vilain C; Delarue M; Grant N
    Cell Differ; 1986 Dec; 19(4):245-52. PubMed ID: 3779848
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Synergic reprogramming of mammalian cells by combined exposure to mitotic Xenopus egg extracts and transcription factors.
    Ganier O; Bocquet S; Peiffer I; Brochard V; Arnaud P; Puy A; Jouneau A; Feil R; Renard JP; Méchali M
    Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17331-6. PubMed ID: 21908712
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Metaphase protein phosphorylation in Xenopus laevis eggs.
    Lohka MJ; Kyes JL; Maller JL
    Mol Cell Biol; 1987 Feb; 7(2):760-8. PubMed ID: 3821728
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Role of Ca++/calmodulin binding proteins in Aspergillus nidulans cell cycle regulation.
    Nanthakumar NN; Dayton JS; Means AR
    Prog Cell Cycle Res; 1996; 2():217-28. PubMed ID: 9552398
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Role of calcineurin in Ca2+-induced release of catecholamines and neuropeptides.
    Hens JJ; De Wit M; Ghijsen WE; Leenders AG; Boddeke HW; Kissmehl R; Wiegant VM; Weller U; Gispen WH; De Graan PN
    J Neurochem; 1998 Nov; 71(5):1978-86. PubMed ID: 9798922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.