These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 17882276)

  • 1. Making a tumour's bed: glioblastoma stem cells and the vascular niche.
    Gilbertson RJ; Rich JN
    Nat Rev Cancer; 2007 Oct; 7(10):733-6. PubMed ID: 17882276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hypoxic peri-arteriolar glioma stem cell niche, an integrated concept of five types of niches in human glioblastoma.
    Aderetti DA; Hira VVV; Molenaar RJ; van Noorden CJF
    Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):346-354. PubMed ID: 29684521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The stem cell niche in glioblastoma: from fundamental aspects to targeted therapies].
    Turpin A; Sharif A; Stoven L; Blond S; Maurage CA; Le Rhun É
    Bull Cancer; 2015 Jan; 102(1):24-33. PubMed ID: 25609493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells.
    Oka N; Soeda A; Inagaki A; Onodera M; Maruyama H; Hara A; Kunisada T; Mori H; Iwama T
    Biochem Biophys Res Commun; 2007 Aug; 360(3):553-9. PubMed ID: 17618600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glioblastoma stem cells are regulated by interleukin-8 signaling in a tumoral perivascular niche.
    Infanger DW; Cho Y; Lopez BS; Mohanan S; Liu SC; Gursel D; Boockvar JA; Fischbach C
    Cancer Res; 2013 Dec; 73(23):7079-89. PubMed ID: 24121485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha.
    Seidel S; Garvalov BK; Wirta V; von Stechow L; Schänzer A; Meletis K; Wolter M; Sommerlad D; Henze AT; Nistér M; Reifenberger G; Lundeberg J; Frisén J; Acker T
    Brain; 2010 Apr; 133(Pt 4):983-95. PubMed ID: 20375133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer stem cells in glioblastoma.
    Lathia JD; Mack SC; Mulkearns-Hubert EE; Valentim CL; Rich JN
    Genes Dev; 2015 Jun; 29(12):1203-17. PubMed ID: 26109046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glioblastoma and stem cells.
    Altaner C
    Neoplasma; 2008; 55(5):369-74. PubMed ID: 18665745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clipping the Wings of Glioblastoma: Modulation of WNT as a Novel Therapeutic Strategy.
    Suwala AK; Hanaford A; Kahlert UD; Maciaczyk J
    J Neuropathol Exp Neurol; 2016 May; 75(5):388-96. PubMed ID: 26979081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer stem cell: target for anti-cancer therapy.
    Tang C; Ang BT; Pervaiz S
    FASEB J; 2007 Dec; 21(14):3777-85. PubMed ID: 17625071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine.
    Kim SS; Harford JB; Pirollo KF; Chang EH
    Biochem Biophys Res Commun; 2015 Dec; 468(3):485-9. PubMed ID: 26116770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting ROR1 inhibits the self-renewal and invasive ability of glioblastoma stem cells.
    Jung EH; Lee HN; Han GY; Kim MJ; Kim CW
    Cell Biochem Funct; 2016 Apr; 34(3):149-57. PubMed ID: 26923195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Type 1 collagen as a potential niche component for CD133-positive glioblastoma cells.
    Motegi H; Kamoshima Y; Terasaka S; Kobayashi H; Houkin K
    Neuropathology; 2014 Aug; 34(4):378-85. PubMed ID: 24673436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells.
    Stangeland B; Mughal AA; Grieg Z; Sandberg CJ; Joel M; Nygård S; Meling T; Murrell W; Vik Mo EO; Langmoen IA
    Oncotarget; 2015 Sep; 6(28):26192-215. PubMed ID: 26295306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glioblastoma cancer stem cells: heterogeneity, microenvironment and related therapeutic strategies.
    Denysenko T; Gennero L; Roos MA; Melcarne A; Juenemann C; Faccani G; Morra I; Cavallo G; Reguzzi S; Pescarmona G; Ponzetto A
    Cell Biochem Funct; 2010 Jul; 28(5):343-51. PubMed ID: 20535838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells.
    Guichet PO; Guelfi S; Teigell M; Hoppe L; Bakalara N; Bauchet L; Duffau H; Lamszus K; Rothhut B; Hugnot JP
    Stem Cells; 2015 Jan; 33(1):21-34. PubMed ID: 24898819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of Notch signaling to glioblastoma via activation of cancer stem cell self-renewal: the role of the endothelial network.
    Gürsel DB; Berry N; Boockvar JA
    Neurosurgery; 2012 Feb; 70(2):N19-21. PubMed ID: 22251985
    [No Abstract]   [Full Text] [Related]  

  • 18. Glioblastoma multiforme tumor stem cells form endothelium.
    Rahman M; Hoh BL
    World Neurosurg; 2011; 75(3-4):338-9. PubMed ID: 21600458
    [No Abstract]   [Full Text] [Related]  

  • 19. Cancer stem cells in radiation resistance.
    Rich JN
    Cancer Res; 2007 Oct; 67(19):8980-4. PubMed ID: 17908997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The MET oncogene in glioblastoma stem cells: implications as a diagnostic marker and a therapeutic target.
    Boccaccio C; Comoglio PM
    Cancer Res; 2013 Jun; 73(11):3193-9. PubMed ID: 23695554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.