BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17883232)

  • 1. Persistence in metabolic nets.
    De la Fuente IM; Benitez N; Santamaria A; Aguirregabiria JM; Veguillas J
    Bull Math Biol; 1999 May; 61(3):573-95. PubMed ID: 17883232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The number of catalytic elements is crucial for the emergence of metabolic cores.
    De la Fuente IM; Vadillo F; Pérez-Pinilla MB; Vera-López A; Veguillas J
    PLoS One; 2009 Oct; 4(10):e7510. PubMed ID: 19888419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of randomized sampling for analysis of metabolic networks.
    Schellenberger J; Palsson BØ
    J Biol Chem; 2009 Feb; 284(9):5457-61. PubMed ID: 18940807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSSPN: dynamic simulation of molecular interaction networks describing gene regulation, signalling and whole-cell metabolism in human cells.
    Fisher CP; Plant NJ; Moore JB; Kierzek AM
    Bioinformatics; 2013 Dec; 29(24):3181-90. PubMed ID: 24064420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of metabolic fluxes, expression levels and metabolite dynamics of a secondary metabolic pathway in potato using label pulse-feeding experiments combined with kinetic network modelling and simulation.
    Heinzle E; Matsuda F; Miyagawa H; Wakasa K; Nishioka T
    Plant J; 2007 Apr; 50(1):176-87. PubMed ID: 17355439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of Monte Carlo sampling methods for metabolic network models.
    Fallahi S; Skaug HJ; Alendal G
    PLoS One; 2020; 15(7):e0235393. PubMed ID: 32609776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational tool for Monte Carlo simulations of biomolecular reaction networks modeled on physical principles.
    Li IT; Mills E; Truong K
    IEEE Trans Nanobioscience; 2010 Mar; 9(1):24-30. PubMed ID: 19887331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From reaction networks to information flow--using modular response analysis to track information in signaling networks.
    Schulthess P; Blüthgen N
    Methods Enzymol; 2011; 500():397-409. PubMed ID: 21943908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of cellular metabolic dissipative, self-organized structures.
    de la Fuente IM
    Int J Mol Sci; 2010 Sep; 11(9):3540-99. PubMed ID: 20957111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The metabolic core and catalytic switches are fundamental elements in the self-regulation of the systemic metabolic structure of cells.
    Fuente IM; Cortes JM; Perez-Pinilla MB; Ruiz-Rodriguez V; Veguillas J
    PLoS One; 2011; 6(11):e27224. PubMed ID: 22125607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regularizing capacity of metabolic networks.
    Marr C; Müller-Linow M; Hütt MT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041917. PubMed ID: 17500931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organising metabolic networks: Cycles in flux distributions.
    Kritz MV; Trindade Dos Santos M; Urrutia S; Schwartz JM
    J Theor Biol; 2010 Aug; 265(3):250-60. PubMed ID: 20435049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-Dependent Gene Network Modelling by Sequential Monte Carlo.
    Ancherbak S; Kuruoglu EE; Vingron M
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1183-1193. PubMed ID: 26540693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global self-regulation of the cellular metabolic structure.
    De la Fuente IM; Vadillo F; Pérez-Samartín AL; Pérez-Pinilla MB; Bidaurrazaga J; Vera-López A
    PLoS One; 2010 Mar; 5(3):e9484. PubMed ID: 20209156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generating global network structures by triad types.
    Cugmas M; Ferligoj A; Žiberna A
    PLoS One; 2018; 13(5):e0197514. PubMed ID: 29847563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attractor metabolic networks.
    De la Fuente IM; Cortes JM; Pelta DA; Veguillas J
    PLoS One; 2013; 8(3):e58284. PubMed ID: 23554883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic optimization of metabolic networks coupled with gene expression.
    Waldherr S; Oyarzún DA; Bockmayr A
    J Theor Biol; 2015 Jan; 365():469-85. PubMed ID: 25451533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuzzy intervention in biological phenomena.
    Nounou HN; Nounou MN; Meskin N; Datta A; Dougherty ER
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1819-25. PubMed ID: 23221089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum entropy modeling of metabolic networks by constraining growth-rate moments predicts coexistence of phenotypes.
    De Martino D
    Phys Rev E; 2017 Dec; 96(6-1):060401. PubMed ID: 29347381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.