BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 17883836)

  • 21. Does human pharmacokinetic prediction add significant value to compound selection in drug discovery research?
    Beaumont K; Smith DA
    Curr Opin Drug Discov Devel; 2009 Jan; 12(1):61-71. PubMed ID: 19152214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. First-principle, structure-based prediction of hepatic metabolic clearance values in human.
    Li H; Sun J; Sui X; Liu J; Yan Z; Liu X; Sun Y; He Z
    Eur J Med Chem; 2009 Apr; 44(4):1600-6. PubMed ID: 18768239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting protein druggability.
    Hajduk PJ; Huth JR; Tse C
    Drug Discov Today; 2005 Dec; 10(23-24):1675-82. PubMed ID: 16376828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteomic methods for drug target discovery.
    Sleno L; Emili A
    Curr Opin Chem Biol; 2008 Feb; 12(1):46-54. PubMed ID: 18282485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioinformatics, target discovery and the pharmaceutical/biotechnology industry.
    Fagan R; Swindells M
    Curr Opin Mol Ther; 2000 Dec; 2(6):655-61. PubMed ID: 11249743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Topological properties of the drug targets regulated by microRNA in human protein-protein interaction network.
    Wang C; Jiang W; Li W; Lian B; Chen X; Hua L; Lin H; Li D; Li X; Liu Z
    J Drug Target; 2011 Jun; 19(5):354-64. PubMed ID: 20678007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Prediction of network drug target based on improved model of bipartite graph valuation].
    Liu X; Lu P; Zuo X; Chen J; Yang H; Yang Y; Gao Y
    Zhongguo Zhong Yao Za Zhi; 2012 Jan; 37(2):125-9. PubMed ID: 22737836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Finding the target after screening the phenotype.
    Hart CP
    Drug Discov Today; 2005 Apr; 10(7):513-9. PubMed ID: 15809197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects.
    Wassermann AM; Geppert H; Bajorath J
    J Chem Inf Model; 2009 Oct; 49(10):2155-67. PubMed ID: 19780576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targets looking for drugs: a multistep computational protocol for the development of structure-based pharmacophores and their applications for hit discovery.
    Tintori C; Corradi V; Magnani M; Manetti F; Botta M
    J Chem Inf Model; 2008 Nov; 48(11):2166-79. PubMed ID: 18942779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of protein structure class by coupling improved genetic algorithm and support vector machine.
    Li ZC; Zhou XB; Lin YR; Zou XY
    Amino Acids; 2008 Oct; 35(3):581-90. PubMed ID: 18427714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Global mapping of pharmacological space.
    Paolini GV; Shapland RH; van Hoorn WP; Mason JS; Hopkins AL
    Nat Biotechnol; 2006 Jul; 24(7):805-15. PubMed ID: 16841068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information.
    Mooney C; Pollastri G
    Proteins; 2009 Oct; 77(1):181-90. PubMed ID: 19422056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PFRES: protein fold classification by using evolutionary information and predicted secondary structure.
    Chen K; Kurgan L
    Bioinformatics; 2007 Nov; 23(21):2843-50. PubMed ID: 17942446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors.
    Geppert H; Humrich J; Stumpfe D; Gärtner T; Bajorath J
    J Chem Inf Model; 2009 Apr; 49(4):767-79. PubMed ID: 19309114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of estimated evolutionary strength at the codon level improves the prediction of disease-related protein mutations in humans.
    Capriotti E; Arbiza L; Casadio R; Dopazo J; Dopazo H; Marti-Renom MA
    Hum Mutat; 2008 Jan; 29(1):198-204. PubMed ID: 17935148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequence-based prediction of protein interaction sites with an integrative method.
    Chen XW; Jeong JC
    Bioinformatics; 2009 Mar; 25(5):585-91. PubMed ID: 19153136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimating quality of template-based protein models by alignment stability.
    Chen H; Kihara D
    Proteins; 2008 May; 71(3):1255-74. PubMed ID: 18041762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.