BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 17884090)

  • 1. A pi-helix switch selective for porphyrin deprotonation and product release in human ferrochelatase.
    Medlock AE; Dailey TA; Ross TA; Dailey HA; Lanzilotta WN
    J Mol Biol; 2007 Nov; 373(4):1006-16. PubMed ID: 17884090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Product release rather than chelation determines metal specificity for ferrochelatase.
    Medlock AE; Carter M; Dailey TA; Dailey HA; Lanzilotta WN
    J Mol Biol; 2009 Oct; 393(2):308-19. PubMed ID: 19703464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate interactions with human ferrochelatase.
    Medlock A; Swartz L; Dailey TA; Dailey HA; Lanzilotta WN
    Proc Natl Acad Sci U S A; 2007 Feb; 104(6):1789-93. PubMed ID: 17261801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferrochelatase π-helix: Implications from examining the role of the conserved π-helix glutamates in porphyrin metalation and product release.
    Gillam ME; Hunter GA; Ferreira GC
    Arch Biochem Biophys; 2018 Apr; 644():37-46. PubMed ID: 29481781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissection of porphyrin-induced conformational dynamics in the heme biosynthesis enzyme ferrochelatase.
    Asuru AP; An M; Busenlehner LS
    Biochemistry; 2012 Sep; 51(36):7116-27. PubMed ID: 22897320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porphyrin interactions with wild-type and mutant mouse ferrochelatase.
    Franco R; Ma JG; Lu Y; Ferreira GC; Shelnutt JA
    Biochemistry; 2000 Mar; 39(10):2517-29. PubMed ID: 10704201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The conserved active-site loop residues of ferrochelatase induce porphyrin conformational changes necessary for catalysis.
    Shi Z; Franco R; Haddad R; Shelnutt JA; Ferreira GC
    Biochemistry; 2006 Mar; 45(9):2904-12. PubMed ID: 16503645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of ferrochelatase: the terminal enzyme in heme biosynthesis.
    Al-Karadaghi S; Hansson M; Nikonov S; Jönsson B; Hederstedt L
    Structure; 1997 Nov; 5(11):1501-10. PubMed ID: 9384565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 2.0 A structure of human ferrochelatase, the terminal enzyme of heme biosynthesis.
    Wu CK; Dailey HA; Rose JP; Burden A; Sellers VM; Wang BC
    Nat Struct Biol; 2001 Feb; 8(2):156-60. PubMed ID: 11175906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Ferrochelatase: Insights for the Mechanism of Ferrous Iron Approaching Protoporphyrin IX by QM/MM and QTCP Free Energy Studies.
    Wu J; Wen S; Zhou Y; Chao H; Shen Y
    J Chem Inf Model; 2016 Dec; 56(12):2421-2433. PubMed ID: 27801584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel(II) chelatase variants directly evolved from murine ferrochelatase: porphyrin distortion and kinetic mechanism.
    McIntyre NR; Franco R; Shelnutt JA; Ferreira GC
    Biochemistry; 2011 Mar; 50(9):1535-44. PubMed ID: 21222436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered orientation of active site residues in variants of human ferrochelatase. Evidence for a hydrogen bond network involved in catalysis.
    Dailey HA; Wu CK; Horanyi P; Medlock AE; Najahi-Missaoui W; Burden AE; Dailey TA; Rose J
    Biochemistry; 2007 Jul; 46(27):7973-9. PubMed ID: 17567154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid residues His183 and Glu264 in Bacillus subtilis ferrochelatase direct and facilitate the insertion of metal ion into protoporphyrin IX.
    Hansson MD; Karlberg T; Rahardja MA; Al-Karadaghi S; Hansson M
    Biochemistry; 2007 Jan; 46(1):87-94. PubMed ID: 17198378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of protoporphyrin IX and metal derivatives to the active site of wild-type mouse ferrochelatase at low porphyrin-to-protein ratios.
    Lu Y; Sousa A; Franco R; Mangravita A; Ferreira GC; Moura I; Shelnutt JA
    Biochemistry; 2002 Jul; 41(26):8253-62. PubMed ID: 12081474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal ion substrate inhibition of ferrochelatase.
    Hunter GA; Sampson MP; Ferreira GC
    J Biol Chem; 2008 Aug; 283(35):23685-91. PubMed ID: 18593702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human ferrochelatase: characterization of substrate-iron binding and proton-abstracting residues.
    Sellers VM; Wu CK; Dailey TA; Dailey HA
    Biochemistry; 2001 Aug; 40(33):9821-7. PubMed ID: 11502175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis.
    Yoon T; Cowan JA
    J Biol Chem; 2004 Jun; 279(25):25943-6. PubMed ID: 15123683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the function of active site residues in the catalytic mechanism of human ferrochelatase.
    Medlock AE; Najahi-Missaoui W; Shiferaw MT; Albetel AN; Lanzilotta WN; Dailey HA
    Biochem J; 2021 Sep; 478(17):3239-3252. PubMed ID: 34402499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QM/MM study of the insertion of metal ion into protoporphyrin IX by ferrochelatase.
    Wang Y; Shen Y; Ryde U
    J Inorg Biochem; 2009 Dec; 103(12):1680-6. PubMed ID: 19850353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures and calorimetry reveal catalytically relevant binding mode of coproporphyrin and coproheme in coproporphyrin ferrochelatase.
    Hofbauer S; Helm J; Obinger C; Djinović-Carugo K; Furtmüller PG
    FEBS J; 2020 Jul; 287(13):2779-2796. PubMed ID: 31794133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.