These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. Dual-channel differential surface plasmon ellipsometry for bio-chemical sensing. Hooper IR; Rooth M; Sambles JR Biosens Bioelectron; 2009 Oct; 25(2):411-7. PubMed ID: 19713095 [TBL] [Abstract][Full Text] [Related]
11. Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics. Law WC; Markowicz P; Yong KT; Roy I; Baev A; Patskovsky S; Kabashin AV; Ho HP; Prasad PN Biosens Bioelectron; 2007 Dec; 23(5):627-32. PubMed ID: 17804214 [TBL] [Abstract][Full Text] [Related]
12. Analytical value of detecting an individual molecular binding event: the case of the surface plasmon resonance biosensor. Šípová H; Vrba D; Homola J Anal Chem; 2012 Jan; 84(1):30-3. PubMed ID: 22145598 [TBL] [Abstract][Full Text] [Related]
13. Experimental and model investigation of the time-dependent 2-dimensional distribution of binding in a herringbone microchannel. Foley JO; Mashadi-Hossein A; Fu E; Finlayson BA; Yager P Lab Chip; 2008 Apr; 8(4):557-64. PubMed ID: 18369510 [TBL] [Abstract][Full Text] [Related]
14. Innovative surface characterization techniques applied to immunosensor elaboration and test: comparing the efficiency of Fourier transform-surface plasmon resonance, quartz crystal microbalance with dissipation measurements, and polarization modulation-reflection absorption infrared spectroscopy. Boujday S; Méthivier C; Beccard B; Pradier CM Anal Biochem; 2009 Apr; 387(2):194-201. PubMed ID: 19454237 [TBL] [Abstract][Full Text] [Related]
15. Monitoring of real-time streptavidin-biotin binding kinetics using droplet microfluidics. Srisa-Art M; Dyson EC; deMello AJ; Edel JB Anal Chem; 2008 Sep; 80(18):7063-7. PubMed ID: 18712935 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic fabrication of addressable tethered lipid bilayer arrays and optimization using SPR with silane-derivatized nanoglassy substrates. Taylor JD; Phillips KS; Cheng Q Lab Chip; 2007 Jul; 7(7):927-30. PubMed ID: 17594015 [TBL] [Abstract][Full Text] [Related]
17. High-throughput DNA droplet assays using picoliter reactor volumes. Srisa-Art M; deMello AJ; Edel JB Anal Chem; 2007 Sep; 79(17):6682-9. PubMed ID: 17676925 [TBL] [Abstract][Full Text] [Related]
18. On-chip surface-based detection with nanohole arrays. De Leebeeck A; Kumar LK; de Lange V; Sinton D; Gordon R; Brolo AG Anal Chem; 2007 Jun; 79(11):4094-100. PubMed ID: 17447728 [TBL] [Abstract][Full Text] [Related]
19. Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization. Malic L; Veres T; Tabrizian M Biosens Bioelectron; 2009 Mar; 24(7):2218-24. PubMed ID: 19136248 [TBL] [Abstract][Full Text] [Related]
20. Comparison of different supramolecular architectures for oligonucleotide biosensing. Mir M; Alvarez M; Azzaroni O; Knoll W Langmuir; 2008 Nov; 24(22):13001-6. PubMed ID: 18947242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]