BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 17884467)

  • 1. Anaerobic biodegradation of 1,4-dioxane by sludge enriched with iron-reducing microorganisms.
    Shen W; Chen H; Pan S
    Bioresour Technol; 2008 May; 99(7):2483-7. PubMed ID: 17884467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic biooxidation of Fe(II) by Dechlorosoma suillum.
    Lack JG; Chaudhuri SK; Chakraborty R; Achenbach LA; Coates JD
    Microb Ecol; 2002 May; 43(4):424-31. PubMed ID: 11953812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of iron(III), humic acids and anthraquinone-2,6-disulfonate on biodegradation of cyclic nitramines by Clostridium sp. EDB2.
    Bhushan B; Halasz A; Hawari J
    J Appl Microbiol; 2006 Mar; 100(3):555-63. PubMed ID: 16478495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate removal from the returned liquor of municipal wastewater treatment plant using iron-reducing bacteria.
    Ivanov V; Stabnikov V; Zhuang WQ; Tay JH; Tay ST
    J Appl Microbiol; 2005; 98(5):1152-61. PubMed ID: 15836485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides.
    Taillefert M; Beckler JS; Carey E; Burns JL; Fennessey CM; DiChristina TJ
    J Inorg Biochem; 2007 Nov; 101(11-12):1760-7. PubMed ID: 17765315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The roles of natural organic matter in chemical and microbial reduction of ferric iron.
    Chen J; Gu B; Royer RA; Burgos WD
    Sci Total Environ; 2003 May; 307(1-3):167-78. PubMed ID: 12711432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the biodegradation potential of 1,4-dioxane in river, soil and activated sludge samples.
    Sei K; Kakinoki T; Inoue D; Soda S; Fujita M; Ike M
    Biodegradation; 2010 Jul; 21(4):585-91. PubMed ID: 20091334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors.
    Villatoro-Monzón WR; Mesta-Howard AM; Razo-Flores E
    Water Sci Technol; 2003; 48(6):125-31. PubMed ID: 14640209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to Acidithiobacillus species.
    Wang S; Zheng G; Zhou L
    Water Res; 2010 Oct; 44(18):5423-31. PubMed ID: 20633920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH-06.
    Kim YM; Jeon JR; Murugesan K; Kim EJ; Chang YS
    Biodegradation; 2009 Jul; 20(4):511-9. PubMed ID: 19085063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acceleration of the Fe(III)EDTA(-) reduction rate in BioDeNO(x) reactors by dosing electron mediating compounds.
    Maas Pv; Brink Pv; Klapwijk B; Lens P
    Chemosphere; 2009 Apr; 75(2):243-9. PubMed ID: 18561978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decomposition of 1,4-dioxane by photo-Fenton oxidation coupled with activated sludge in a polyester manufacturing process.
    So MH; Han JS; Han TH; Seo JW; Kim CG
    Water Sci Technol; 2009; 59(5):1003-9. PubMed ID: 19273900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction.
    Weber KA; Achenbach LA; Coates JD
    Nat Rev Microbiol; 2006 Oct; 4(10):752-64. PubMed ID: 16980937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flocculation of activated sludge flocs by stimulation of the aerobic biological activity.
    Wilén BM; Keiding K; Nielsen PH
    Water Res; 2004 Nov; 38(18):3909-19. PubMed ID: 15380981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of biological wastewater treatment conditions for 1,4-dioxane decomposition in polyester manufacturing processes.
    Han JS; So MH; Kim CG
    Water Sci Technol; 2009; 59(5):995-1002. PubMed ID: 19273899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic 1,4-dioxane biodegradation and microbial community analysis in microcosms inoculated with soils or sediments and different electron acceptors.
    Ramalingam V; Cupples AM
    Appl Microbiol Biotechnol; 2020 May; 104(9):4155-4170. PubMed ID: 32170385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Reduction of chromate, selenite, tellurite, and iron(III) by the moderately thermophilic bacterium Bacillus thermoamylovorans SKC1].
    Slobodkina GB; Bonch-Osmolovskaia EA; Slobodkin AI
    Mikrobiologiia; 2007; 76(5):602-7. PubMed ID: 18069319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissimilatory Fe(III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil.
    Kim GT; Hyun MS; Chang IS; Kim HJ; Park HS; Kim BH; Kim SD; Wimpenny JW; Weightman AJ
    J Appl Microbiol; 2005; 99(4):978-87. PubMed ID: 16162251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron-binding catechols oxidating lignin and chlorolignin.
    Parra C; Rodriguez J; Baeza J; Freer J; Durán N
    Biochem Biophys Res Commun; 1998 Oct; 251(2):399-402. PubMed ID: 9792786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.