These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 17884467)

  • 21. Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation.
    Xiao B; Liu J
    J Hazard Mater; 2009 Aug; 168(1):163-7. PubMed ID: 19278778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of Prussian Blue by the two iron-reducing microorganisms Geobacter metallireducens and Shewanella alga.
    Jahn MK; Haderlein SB; Meckenstock RU
    Environ Microbiol; 2006 Feb; 8(2):362-7. PubMed ID: 16423022
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced sonochemical decomposition of 1,4-dioxane by ferrous iron.
    Beckett MA; Hua I
    Water Res; 2003 May; 37(10):2372-6. PubMed ID: 12727247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NO removal in continuous BioDeNOx reactors: Fe(II)EDTA2- regeneration, biomass growth, and EDTA degradation.
    van der Maas P; van den Brink P; Utomo S; Klapwijk B; Lens P
    Biotechnol Bioeng; 2006 Jun; 94(3):575-84. PubMed ID: 16596664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of Fe0/Fe2+/Fe3+ on nitrobenzene degradation in the anaerobic sludge.
    Zhang W; Chen L; Chen H; Xia SQ
    J Hazard Mater; 2007 May; 143(1-2):57-64. PubMed ID: 17034938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Characterization of membrane-bound Fe(III)-EDTA reductase activities of the thermophilic gram-positive dissimilatory iron-reducing bacterium Thermoterrabacterium ferrireducens].
    Gavrilov SN; Slobodkin AI; Robb FT; de Vries S
    Mikrobiologiia; 2007; 76(2):164-71. PubMed ID: 17583211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Bacterial Fe(III) reduction].
    Hong YG; Xu MY; Guo J; Cen YH; Sun GP
    Wei Sheng Wu Xue Bao; 2005 Aug; 45(4):653-6. PubMed ID: 16245892
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biotransformation of arsenic species by activated sludge and removal of bio-oxidised arsenate from wastewater by coagulation with ferric chloride.
    Andrianisa HA; Ito A; Sasaki A; Aizawa J; Umita T
    Water Res; 2008 Dec; 42(19):4809-17. PubMed ID: 18817941
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01.
    Wang Y; Wu C; Wang X; Zhou S
    J Hazard Mater; 2009 May; 164(2-3):941-7. PubMed ID: 18849114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Microbial reduction ability of various iron oxides in pure culture experiment].
    Qu D; Schnell S
    Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):745-9. PubMed ID: 12552834
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long term studies on the anaerobic biodegradability of MTBE and other gasoline ethers.
    Waul C; Arvin E; Schmidt JE
    J Hazard Mater; 2009 Apr; 163(1):427-32. PubMed ID: 18715711
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anaerobic humus and Fe(III) reduction and electron transport pathway by a novel humus-reducing bacterium, Thauera humireducens SgZ-1.
    Ma C; Yu Z; Lu Q; Zhuang L; Zhou SG
    Appl Microbiol Biotechnol; 2015 Apr; 99(8):3619-28. PubMed ID: 25503315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of Fe(III)-reducing enrichment cultures and isolation of Fe(III)-reducing bacteria from the Savannah River site, South Carolina.
    Scala DJ; Hacherl EL; Cowan R; Young LY; Kosson DS
    Res Microbiol; 2006 Oct; 157(8):772-83. PubMed ID: 16730954
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anaerobic benzene degradation.
    Lovley DR
    Biodegradation; 2000; 11(2-3):107-16. PubMed ID: 11440238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture.
    Kunapuli U; Griebler C; Beller HR; Meckenstock RU
    Environ Microbiol; 2008 Jul; 10(7):1703-12. PubMed ID: 18412549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge.
    Karri S; Sierra-Alvarez R; Field JA
    Biotechnol Bioeng; 2005 Dec; 92(7):810-9. PubMed ID: 16136594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from west bengal aquifer sediments.
    Rowland HA; Boothman C; Pancost R; Gault AG; Polya DA; Lloyd JR
    J Environ Qual; 2009; 38(4):1598-607. PubMed ID: 19549936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analyses of phosphorus in sewage by fraction method.
    Choi HJ; Choi CH; Lee SM
    J Hazard Mater; 2009 Aug; 167(1-3):345-50. PubMed ID: 19188022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulation of anaerobic digestion of thickened sewage sludge by iron-rich sludge produced by the fenton method.
    Lee H; Shoda M
    J Biosci Bioeng; 2008 Jul; 106(1):107-10. PubMed ID: 18691541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.