These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 17884586)

  • 1. Greater activation of the "default" brain regions predicts stop signal errors.
    Li CS; Yan P; Bergquist KL; Sinha R
    Neuroimage; 2007 Nov; 38(3):640-8. PubMed ID: 17884586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deficits in default mode network activity preceding error in cocaine dependent individuals.
    Bednarski SR; Zhang S; Hong KI; Sinha R; Rounsaville BJ; Li CS
    Drug Alcohol Depend; 2011 Dec; 119(3):e51-7. PubMed ID: 21703783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Error-specific medial cortical and subcortical activity during the stop signal task: a functional magnetic resonance imaging study.
    Li CS; Yan P; Chao HH; Sinha R; Paliwal P; Constable RT; Zhang S; Lee TW
    Neuroscience; 2008 Sep; 155(4):1142-51. PubMed ID: 18674592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perigenual anterior cingulate event-related potential precedes stop signal errors.
    Chang A; Chen CC; Li HH; Li CS
    Neuroimage; 2015 May; 111():179-85. PubMed ID: 25700955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cerebellar thalamic cortical circuit for error-related cognitive control.
    Ide JS; Li CS
    Neuroimage; 2011 Jan; 54(1):455-64. PubMed ID: 20656038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks.
    Rubia K; Russell T; Overmeyer S; Brammer MJ; Bullmore ET; Sharma T; Simmons A; Williams SC; Giampietro V; Andrew CM; Taylor E
    Neuroimage; 2001 Feb; 13(2):250-61. PubMed ID: 11162266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural correlates of post-error slowing during a stop signal task: a functional magnetic resonance imaging study.
    Li CS; Huang C; Yan P; Paliwal P; Constable RT; Sinha R
    J Cogn Neurosci; 2008 Jun; 20(6):1021-9. PubMed ID: 18211230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural aftereffects of errors in a stop-signal task.
    Beyer F; Münte TF; Fischer J; Krämer UM
    Neuropsychologia; 2012 Dec; 50(14):3304-12. PubMed ID: 23063968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unavoidable errors: a spatio-temporal analysis of time-course and neural sources of evoked potentials associated with error processing in a speeded task.
    Vocat R; Pourtois G; Vuilleumier P
    Neuropsychologia; 2008 Aug; 46(10):2545-55. PubMed ID: 18533202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are posterior default-mode networks more robust than anterior default-mode networks? Evidence from resting-state fMRI data analysis.
    Kim DY; Lee JH
    Neurosci Lett; 2011 Jul; 498(1):57-62. PubMed ID: 21575682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gender differences in the neural correlates of response inhibition during a stop signal task.
    Li CS; Huang C; Constable RT; Sinha R
    Neuroimage; 2006 Oct; 32(4):1918-29. PubMed ID: 16806976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation.
    Greicius MD; Menon V
    J Cogn Neurosci; 2004 Nov; 16(9):1484-92. PubMed ID: 15601513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences between Alzheimer's disease and dementia with Lewy bodies: an fMRI study of task-related brain activity.
    Sauer J; ffytche DH; Ballard C; Brown RG; Howard R
    Brain; 2006 Jul; 129(Pt 7):1780-8. PubMed ID: 16670180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The neural correlates and functional integration of cognitive control in a Stroop task.
    Egner T; Hirsch J
    Neuroimage; 2005 Jan; 24(2):539-47. PubMed ID: 15627596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Independent component model of the default-mode brain function: Assessing the impact of active thinking.
    Esposito F; Bertolino A; Scarabino T; Latorre V; Blasi G; Popolizio T; Tedeschi G; Cirillo S; Goebel R; Di Salle F
    Brain Res Bull; 2006 Oct; 70(4-6):263-9. PubMed ID: 17027761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociable roles of default-mode regions during episodic encoding.
    Maillet D; Rajah MN
    Neuroimage; 2014 Apr; 89():244-55. PubMed ID: 24315838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of human errors by maladaptive changes in event-related brain networks.
    Eichele T; Debener S; Calhoun VD; Specht K; Engel AK; Hugdahl K; von Cramon DY; Ullsperger M
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):6173-8. PubMed ID: 18427123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of activated regions during a language task.
    De Carli D; Garreffa G; Colonnese C; Giulietti G; Labruna L; Briselli E; Ken S; Macrì MA; Maraviglia B
    Magn Reson Imaging; 2007 Jul; 25(6):933-8. PubMed ID: 17524589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociable processes of cognitive control during error and non-error conflicts: a study of the stop signal task.
    Hendrick OM; Ide JS; Luo X; Li CS
    PLoS One; 2010 Oct; 5(10):e13155. PubMed ID: 20949134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural correlates of error awareness.
    Klein TA; Endrass T; Kathmann N; Neumann J; von Cramon DY; Ullsperger M
    Neuroimage; 2007 Feb; 34(4):1774-81. PubMed ID: 17185003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.