BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 17884654)

  • 1. Decolorization of anthraquinone-type dye by bilirubin oxidase-producing nonligninolytic fungus Myrothecium sp. IMER1.
    Zhang X; Liu Y; Yan K; Wu H
    J Biosci Bioeng; 2007 Aug; 104(2):104-10. PubMed ID: 17884654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decolorization and biodegradation of remazol brilliant blue R by bilirubin oxidase.
    Liu Y; Huang J; Zhang X
    J Biosci Bioeng; 2009 Dec; 108(6):496-500. PubMed ID: 19914582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification, characterization and decolorization of bilirubin oxidase from Myrothecium verrucaria 3.2190.
    Han X; Zhao M; Lu L; Liu Y
    Fungal Biol; 2012 Aug; 116(8):863-71. PubMed ID: 22862914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decolorization of Remazol Brilliant Blue R by a purified laccase of Polyporus brumalis.
    Kim H; Lee S; Ryu S; Choi HT
    Appl Biochem Biotechnol; 2012 Jan; 166(1):159-64. PubMed ID: 22057907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of Remazol Brilliant Blue R using isolated bacterial culture (Staphylococcus sp. K2204).
    Velayutham K; Madhava AK; Pushparaj M; Thanarasu A; Devaraj T; Periyasamy K; Subramanian S
    Environ Technol; 2018 Nov; 39(22):2900-2907. PubMed ID: 28820042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decolorization of anthraquinone dye by Aspergillus ficuum in various physiological states.
    Xinjiao D; Wenhai C
    J Environ Biol; 2003 Apr; 24(2):181-6. PubMed ID: 12974461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. White-rot fungus Ganoderma sp.En3 had a strong ability to decolorize and tolerate the anthraquinone, indigo and triphenylmethane dye with high concentrations.
    Lu R; Ma L; He F; Yu D; Fan R; Zhang Y; Long Z; Zhang X; Yang Y
    Bioprocess Biosyst Eng; 2016 Mar; 39(3):381-90. PubMed ID: 26684007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3.
    Wang H; Zheng XW; Su JQ; Tian Y; Xiong XJ; Zheng TL
    J Hazard Mater; 2009 Nov; 171(1-3):654-9. PubMed ID: 19577842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decolorization of synthetic dyes by crude laccase from a newly isolated Trametes trogii strain cultivated on solid agro-industrial residue.
    Zeng X; Cai Y; Liao X; Zeng X; Li W; Zhang D
    J Hazard Mater; 2011 Mar; 187(1-3):517-25. PubMed ID: 21315513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Analyses of cell coloring matter and degradation products of anthraquinone dye decolorization bacteria XL-1 using ultraviolet absorption spectroscopy].
    Dong XL; Zhou JT; Wang J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Apr; 23(2):340-1. PubMed ID: 12961889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Laccase from
    Qin P; Wu Y; Adil B; Wang J; Gu Y; Yu X; Zhao K; Zhang X; Ma M; Chen Q; Chen X; Zhang Z; Xiang Q
    Molecules; 2019 Oct; 24(21):. PubMed ID: 31671660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laccase-mediated Remazol Brilliant Blue R decolorization in a fixed-bed bioreactor.
    Palmieri G; Giardina P; Sannia G
    Biotechnol Prog; 2005; 21(5):1436-41. PubMed ID: 16209547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orange G and Remazol Brilliant Blue R decolorization by white rot fungi Dichomitus squalens, Ischnoderma resinosum and Pleurotus calyptratus.
    Eichlerová I; Homolka L; Lisá L; Nerud F
    Chemosphere; 2005 Jul; 60(3):398-404. PubMed ID: 15924959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic dye decolorization capacity of white rot fungus Dichomitus squalens.
    Eichlerová I; Homolka L; Nerud F
    Bioresour Technol; 2006 Nov; 97(16):2153-9. PubMed ID: 16257199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decolorization of anthraquinone dye with immobilized Penicillium jensenii.
    Dong X
    J Environ Biol; 2005 Jul; 26(3):475-8. PubMed ID: 16334285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of minimum enzymatic decolorization time of reactive dye solution by spectroscopic & mathematical approach.
    Celebi M; Ozdemir ZO; Eroglu E; Altikatoglu M; Guney I
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Feb; 35(2):340-5. PubMed ID: 25970889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decolorization of an anthraquinone-type dye using a laccase formulation.
    Soares GM; Costa-Ferreira M; Pessoa de Amorim MT
    Bioresour Technol; 2001 Sep; 79(2):171-7. PubMed ID: 11480926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bilirubin oxidase-based silica macrocellular robust catalyst for on line dyes degradation.
    Roucher A; Roussarie E; Gauvin RM; Rouhana J; Gounel S; Stines-Chaumeil C; Mano N; Backov R
    Enzyme Microb Technol; 2019 Jan; 120():77-83. PubMed ID: 30396402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum.
    Murugesan K; Kim YM; Jeon JR; Chang YS
    J Hazard Mater; 2009 Aug; 168(1):523-9. PubMed ID: 19356850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of recombinant laccase from Trametes versicolor in Pichia methanolica and its use for the decolorization of anthraquinone dye.
    Guo M; Lu F; Liu M; Li T; Pu J; Wang N; Liang P; Zhang C
    Biotechnol Lett; 2008 Dec; 30(12):2091-6. PubMed ID: 18688574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.