BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 17884930)

  • 1. NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin-dependent kinases.
    Lamsa K; Irvine EE; Giese KP; Kullmann DM
    J Physiol; 2007 Nov; 584(Pt 3):885-94. PubMed ID: 17884930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term potentiation can be induced in the CA1 region of hippocampus in the absence of αCaMKII T286-autophosphorylation.
    Villers A; Giese KP; Ris L
    Learn Mem; 2014 Nov; 21(11):616-26. PubMed ID: 25322797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term potentiation in cultured hippocampal neurons.
    Molnár E
    Semin Cell Dev Biol; 2011 Jul; 22(5):506-13. PubMed ID: 21807105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synapse-specific compartmentalization of signaling cascades for LTP induction in CA3 interneurons.
    Galván EJ; Pérez-Rosello T; Gómez-Lira G; Lara E; Gutiérrez R; Barrionuevo G
    Neuroscience; 2015 Apr; 290():332-45. PubMed ID: 25637803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination.
    Lamsa K; Heeroma JH; Kullmann DM
    Nat Neurosci; 2005 Jul; 8(7):916-24. PubMed ID: 15937481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of contextual memory formed in the absence of αCaMKII autophosphorylation.
    Irvine EE; Danhiez A; Radwanska K; Nassim C; Lucchesi W; Godaux E; Ris L; Giese KP
    Mol Brain; 2011 Jan; 4():8. PubMed ID: 21276220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation.
    Schmitt JM; Guire ES; Saneyoshi T; Soderling TR
    J Neurosci; 2005 Feb; 25(5):1281-90. PubMed ID: 15689566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulating β-adrenergic receptors promotes synaptic potentiation by switching CaMKII movement from LTD to LTP mode.
    Larsen ME; Buonarati OR; Qian H; Hell JW; Bayer KU
    J Biol Chem; 2023 Jun; 299(6):104706. PubMed ID: 37061000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca(2+) permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinases but not Ca/CaM-dependent kinase II.
    Asrar S; Zhou Z; Ren W; Jia Z
    PLoS One; 2009; 4(2):e4339. PubMed ID: 19190753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CaMKII T286 phosphorylation has distinct essential functions in three forms of long-term plasticity.
    Cook SG; Rumian NL; Bayer KU
    J Biol Chem; 2022 Sep; 298(9):102299. PubMed ID: 35872016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autophosphorylation of alphaCaMKII is not a general requirement for NMDA receptor-dependent LTP in the adult mouse.
    Cooke SF; Wu J; Plattner F; Errington M; Rowan M; Peters M; Hirano A; Bradshaw KD; Anwyl R; Bliss TV; Giese KP
    J Physiol; 2006 Aug; 574(Pt 3):805-18. PubMed ID: 16728448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+/calmodulin-dependent protein kinase II and protein kinase C activities mediate extracellular glucose-regulated hippocampal synaptic efficacy.
    Moriguchi S; Oomura Y; Shioda N; Han F; Hori N; Aou S; Fukunaga K
    Mol Cell Neurosci; 2011 Jan; 46(1):101-7. PubMed ID: 20807573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncoupling the D1-N-methyl-D-aspartate (NMDA) receptor complex promotes NMDA-dependent long-term potentiation and working memory.
    Nai Q; Li S; Wang SH; Liu J; Lee FJ; Frankland PW; Liu F
    Biol Psychiatry; 2010 Feb; 67(3):246-54. PubMed ID: 19846062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active calcium/calmodulin-dependent protein kinase II (CaMKII) regulates NMDA receptor mediated postischemic long-term potentiation (i-LTP) by promoting the interaction between CaMKII and NMDA receptors in ischemia.
    Wang N; Chen L; Cheng N; Zhang J; Tian T; Lu W
    Neural Plast; 2014; 2014():827161. PubMed ID: 24734203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses.
    Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S
    Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. alpha-Isoform of calcium-calmodulin-dependent protein kinase II and postsynaptic density protein 95 differentially regulate synaptic expression of NR2A- and NR2B-containing N-methyl-d-aspartate receptors in hippocampus.
    Park CS; Elgersma Y; Grant SG; Morrison JH
    Neuroscience; 2008 Jan; 151(1):43-55. PubMed ID: 18082335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatostatin contributes to long-term potentiation at excitatory synapses onto hippocampal somatostatinergic interneurons.
    Racine AS; Michon FX; Laplante I; Lacaille JC
    Mol Brain; 2021 Aug; 14(1):130. PubMed ID: 34429141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP?
    Chen HX; Otmakhov N; Strack S; Colbran RJ; Lisman JE
    J Neurophysiol; 2001 Apr; 85(4):1368-76. PubMed ID: 11287461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of inhibitory autophosphorylation of calcium/calmodulin-dependent kinase II (αCAMKII) in persistent (>24 h) hippocampal LTP and in LTD facilitated by novel object-place learning and recognition in mice.
    Goh JJ; Manahan-Vaughan D
    Behav Brain Res; 2015 May; 285():79-88. PubMed ID: 24480420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T-type calcium channels contribute to NMDA receptor independent synaptic plasticity in hippocampal regular-spiking oriens-alveus interneurons.
    Nicholson E; Kullmann DM
    J Physiol; 2017 Jun; 595(11):3449-3458. PubMed ID: 28134447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.