BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 17884972)

  • 1. Retooling Leishmania metabolism: from sand fly gut to human macrophage.
    Rosenzweig D; Smith D; Opperdoes F; Stern S; Olafson RW; Zilberstein D
    FASEB J; 2008 Feb; 22(2):590-602. PubMed ID: 17884972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum.
    Rochette A; Raymond F; Corbeil J; Ouellette M; Papadopoulou B
    Mol Biochem Parasitol; 2009 May; 165(1):32-47. PubMed ID: 19393160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental regulation of proline transport in Leishmania donovani.
    Mazareb S; Fu ZY; Zilberstein D
    Exp Parasitol; 1999 Apr; 91(4):341-8. PubMed ID: 10092478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoproteomic analysis of differentiating Leishmania parasites reveals a unique stage-specific phosphorylation motif.
    Tsigankov P; Gherardini PF; Helmer-Citterich M; Späth GF; Zilberstein D
    J Proteome Res; 2013 Jul; 12(7):3405-12. PubMed ID: 23688256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of developmentally-regulated proteins in Leishmania panamensis by proteome profiling of promastigotes and axenic amastigotes.
    Walker J; Vasquez JJ; Gomez MA; Drummelsmith J; Burchmore R; Girard I; Ouellette M
    Mol Biochem Parasitol; 2006 May; 147(1):64-73. PubMed ID: 16530278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What has proteomics taught us about Leishmania development?
    Tsigankov P; Gherardini PF; Helmer-Citterich M; Zilberstein D
    Parasitology; 2012 Aug; 139(9):1146-57. PubMed ID: 22369930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional genomics in sand fly-derived Leishmania promastigotes.
    Alcolea PJ; Alonso A; Molina R; Jiménez M; Myler PJ; Larraga V
    PLoS Negl Trop Dis; 2019 May; 13(5):e0007288. PubMed ID: 31071080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response.
    Barak E; Amin-Spector S; Gerliak E; Goyard S; Holland N; Zilberstein D
    Mol Biochem Parasitol; 2005 May; 141(1):99-108. PubMed ID: 15811531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Leishmania-specific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses.
    Hem S; Gherardini PF; Osorio y Fortéa J; Hourdel V; Morales MA; Watanabe R; Pescher P; Kuzyk MA; Smith D; Borchers CH; Zilberstein D; Helmer-Citterich M; Namane A; Späth GF
    Proteomics; 2010 Nov; 10(21):3868-83. PubMed ID: 20960452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of energy metabolism in breast cancer brain metastases.
    Chen EI; Hewel J; Krueger JS; Tiraby C; Weber MR; Kralli A; Becker K; Yates JR; Felding-Habermann B
    Cancer Res; 2007 Feb; 67(4):1472-86. PubMed ID: 17308085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic regulation of pathways of carbohydrate oxidation in potato (Solanum tuberosum) tubers.
    Centeno DC; Oliver SN; Nunes-Nesi A; Geigenberger P; Machado DN; Loureiro ME; Silva MA; Fernie AR
    Physiol Plant; 2008 Aug; 133(4):744-54. PubMed ID: 18494735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leishmania spp.: mechanisms of toxicity of nitrogen oxidation products.
    Mauël J; Ransijn A
    Exp Parasitol; 1997 Oct; 87(2):98-111. PubMed ID: 9326885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative proteome profiling informs on phenotypic traits that adapt Leishmania donovani for axenic and intracellular proliferation.
    Pescher P; Blisnick T; Bastin P; Späth GF
    Cell Microbiol; 2011 Jul; 13(7):978-91. PubMed ID: 21501362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome analysis during the process of in vitro differentiation of Leishmania donovani using genomic microarrays.
    Srividya G; Duncan R; Sharma P; Raju BV; Nakhasi HL; Salotra P
    Parasitology; 2007 Oct; 134(Pt 11):1527-39. PubMed ID: 17553180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed.
    Leifso K; Cohen-Freue G; Dogra N; Murray A; McMaster WR
    Mol Biochem Parasitol; 2007 Mar; 152(1):35-46. PubMed ID: 17188763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Leishmania-macrophage interaction: a metabolic perspective.
    Naderer T; McConville MJ
    Cell Microbiol; 2008 Feb; 10(2):301-8. PubMed ID: 18070117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure and function of the surface lipophosphoglycan on different developmental stages of Leishmania promastigotes.
    Sacks DL
    Infect Agents Dis; 1992 Aug; 1(4):200-6. PubMed ID: 1365546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global gene expression in Leishmania.
    Cohen-Freue G; Holzer TR; Forney JD; McMaster WR
    Int J Parasitol; 2007 Aug; 37(10):1077-86. PubMed ID: 17574557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Over-expression of Leishmania major MAP kinases reveals stage-specific induction of phosphotransferase activity.
    Morales MA; Renaud O; Faigle W; Shorte SL; Späth GF
    Int J Parasitol; 2007 Sep; 37(11):1187-99. PubMed ID: 17481635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.