These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 17885082)

  • 21. Enhancement of seed phytosterol levels by expression of an N-terminal truncated Hevea brasiliensis (rubber tree) 3-hydroxy-3-methylglutaryl-CoA reductase.
    Harker M; Holmberg N; Clayton JC; Gibbard CL; Wallace AD; Rawlins S; Hellyer SA; Lanot A; Safford R
    Plant Biotechnol J; 2003 Mar; 1(2):113-21. PubMed ID: 17147748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants.
    Dahlqvist A; Stahl U; Lenman M; Banas A; Lee M; Sandager L; Ronne H; Stymne S
    Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6487-92. PubMed ID: 10829075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of the phospholipid sterol acyltransferase1 in plant sterol homeostasis and leaf senescence.
    Bouvier-Navé P; Berna A; Noiriel A; Compagnon V; Carlsson AS; Banas A; Stymne S; Schaller H
    Plant Physiol; 2010 Jan; 152(1):107-19. PubMed ID: 19923239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of sterol-ester synthetase in Saccharomyces cerevisiae.
    Taketani S; Nishino T; Katsuki H
    Biochim Biophys Acta; 1979 Oct; 575(1):148-55. PubMed ID: 389289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene.
    Zou J; Katavic V; Giblin EM; Barton DL; MacKenzie SL; Keller WA; Hu X; Taylor DC
    Plant Cell; 1997 Jun; 9(6):909-23. PubMed ID: 9212466
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular characterization of an Arabidopsis acyl-coenzyme a synthetase localized on glyoxysomal membranes.
    Hayashi H; De Bellis L; Hayashi Y; Nito K; Kato A; Hayashi M; Hara-Nishimura I; Nishimura M
    Plant Physiol; 2002 Dec; 130(4):2019-26. PubMed ID: 12481085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating the allosterism of acyl-CoA:cholesterol acyltransferase (ACAT) by using various sterols: in vitro and intact cell studies.
    Liu J; Chang CC; Westover EJ; Covey DF; Chang TY
    Biochem J; 2005 Oct; 391(Pt 2):389-97. PubMed ID: 15992359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae.
    Ploier B; Korber M; Schmidt C; Koch B; Leitner E; Daum G
    Biochim Biophys Acta; 2015 Jul; 1851(7):977-86. PubMed ID: 25720564
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Excess sterols disrupt plant cellular activity by inducing stress-responsive gene expression.
    Shimada TL; Yamaguchi K; Shigenobu S; Takahashi H; Murase M; Fukuyoshi S; Hara-Nishimura I
    J Plant Res; 2020 May; 133(3):383-392. PubMed ID: 32185672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular aspects of intracellular sterol esterification: the acyl coenzyme A: cholesterol acyltransferase reaction.
    Sturley SL
    Curr Opin Lipidol; 1997 Jun; 8(3):167-73. PubMed ID: 9211065
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional identification of sterol-4alpha-methyl oxidase cDNAs from Arabidopsis thaliana by complementation of a yeast erg25 mutant lacking sterol-4alpha-methyl oxidation.
    Darnet S; Bard M; Rahier A
    FEBS Lett; 2001 Nov; 508(1):39-43. PubMed ID: 11707264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lanosterol synthase in dicotyledonous plants.
    Suzuki M; Xiang T; Ohyama K; Seki H; Saito K; Muranaka T; Hayashi H; Katsube Y; Kushiro T; Shibuya M; Ebizuka Y
    Plant Cell Physiol; 2006 May; 47(5):565-71. PubMed ID: 16531458
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sterol esterification in yeast: a two-gene process.
    Yang H; Bard M; Bruner DA; Gleeson A; Deckelbaum RJ; Aljinovic G; Pohl TM; Rothstein R; Sturley SL
    Science; 1996 May; 272(5266):1353-6. PubMed ID: 8650549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis.
    Lung SC; Liao P; Yeung EC; Hsiao AS; Xue Y; Chye ML
    Plant Physiol; 2017 Jul; 174(3):1420-1435. PubMed ID: 28500265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of sterol transport from the endoplasmic reticulum to mitochondria using mitochondrially targeted bacterial sterol acyltransferase in Saccharomyces cerevisiae.
    Tian S; Ohta A; Horiuchi H; Fukuda R
    Biosci Biotechnol Biochem; 2015; 79(10):1608-14. PubMed ID: 26106800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Arabidopsis mutant deficient in sterol biosynthesis: heterologous complementation by ERG 3 encoding a delta 7-sterol-C-5-desaturase from yeast.
    Gachotte D; Meens R; Benveniste P
    Plant J; 1995 Sep; 8(3):407-16. PubMed ID: 7550378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cholesterol-lowering effects of plant sterol esters differ in milk, yoghurt, bread and cereal.
    Clifton PM; Noakes M; Sullivan D; Erichsen N; Ross D; Annison G; Fassoulakis A; Cehun M; Nestel P
    Eur J Clin Nutr; 2004 Mar; 58(3):503-9. PubMed ID: 14985690
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An acyl-CoA:cholesterol acyltransferase (ACAT)-related gene is involved in the accumulation of triacylglycerols in Saccharomyces cerevisiae.
    Sandager L; Dahlqvist A; Banaś A; Ståhl U; Lenman M; Gustavsson M; Stymne S
    Biochem Soc Trans; 2000 Dec; 28(6):700-2. PubMed ID: 11171176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of a Pentacyclic Triterpene Acetyltransferase Involved in the Biosynthesis of Taraxasterol and ψ-Taraxasterol Acetates in Lettuce.
    Choi HS; Han JY; Cheong EJ; Choi YE
    Front Plant Sci; 2021; 12():788356. PubMed ID: 35046976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphoproteome exploration reveals a reformatting of cellular processes in response to low sterol biosynthetic capacity in Arabidopsis.
    Heintz D; Gallien S; Compagnon V; Berna A; Suzuki M; Yoshida S; Muranaka T; Van Dorsselaer A; Schaeffer C; Bach TJ; Schaller H
    J Proteome Res; 2012 Feb; 11(2):1228-39. PubMed ID: 22182420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.