These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 17885336)

  • 1. Classification of physiologically significant pumping states in an implantable rotary blood pump: patient trial results.
    Karantonis DM; Mason DG; Salamonsen RF; Ayre PJ; Cloherty SL; Lovell NH
    ASAIO J; 2007; 53(5):617-22. PubMed ID: 17885336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and classification of physiologically significant pumping states in an implantable rotary blood pump.
    Karantonis DM; Lovell NH; Ayre PJ; Mason DG; Cloherty SL
    Artif Organs; 2006 Sep; 30(9):671-9. PubMed ID: 16934095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated non-invasive detection of pumping states in an implantable rotary blood pump.
    Karantonis DM; Cloherty SL; Mason DG; Salamonsen RF; Ayre PJ; Lovell NH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5386-9. PubMed ID: 17946699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of physiologically significant pumping states in an implantable rotary blood pump: effects of cardiac rhythm disturbances.
    Karantonis DM; Lovell NH; Ayre PJ; Mason DG; Cloherty SL
    Artif Organs; 2007 Jun; 31(6):476-9. PubMed ID: 17537061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A suction detection system for rotary blood pumps based on the Lagrangian support vector machine algorithm.
    Wang Y; Simaan MA
    IEEE J Biomed Health Inform; 2013 May; 17(3):654-63. PubMed ID: 23192602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of suction detection during different pumping states in an implantable rotary blood pump.
    Ng SC; Lim E; Mason DG; Avolio AP; Lovell NH
    Artif Organs; 2013 Aug; 37(8):E145-54. PubMed ID: 23635073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomy and Physiology of Left Ventricular Suction Induced by Rotary Blood Pumps.
    Salamonsen RF; Lim E; Moloney J; Lovell NH; Rosenfeldt FL
    Artif Organs; 2015 Aug; 39(8):681-90. PubMed ID: 26146861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust aortic valve non-opening detection for different cardiac conditions.
    Ooi HL; Ng SC; Lim E; Salamonsen RF; Avolio AP; Lovell NH
    Artif Organs; 2014 Mar; 38(3):E57-67. PubMed ID: 24422872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Monitoring of Aortic Valve Opening in Rotary Blood Pump Patients.
    Granegger M; Masetti M; Laohasurayodhin R; Schloeglhofer T; Zimpfer D; Schima H; Moscato F
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1201-7. PubMed ID: 26461795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of aortic valve opening during rotary blood pump support using pump signals.
    Granegger M; Schima H; Zimpfer D; Moscato F
    Artif Organs; 2014 Apr; 38(4):290-7. PubMed ID: 24102321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow study on a newly developed impeller for a left ventricular assist device.
    Hsu CH
    J Artif Organs; 2003; 6(2):92-100. PubMed ID: 14598109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impeller-pump model derived from conservation laws applied to the simulation of the cardiovascular system coupled to heart-assist pumps.
    Shi Y; Korakianitis T
    Comput Biol Med; 2018 Feb; 93():127-138. PubMed ID: 29304409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliable suction detection for patients with rotary blood pumps.
    Mason DG; Hilton AK; Salamonsen RF
    ASAIO J; 2008; 54(4):359-66. PubMed ID: 18645352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulation of sensorless fuzzy control of a rotary blood pump to assure normal physiology.
    Fu M; Xu L
    ASAIO J; 2000; 46(3):273-8. PubMed ID: 10826735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of left ventricular relaxation in rotary blood pump recipients using the pump flow waveform: a simulation study.
    Moscato F; Granegger M; Naiyanetr P; Wieselthaler G; Schima H
    Artif Organs; 2012 May; 36(5):470-8. PubMed ID: 22171892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suction events during left ventricular support and ventricular arrhythmias.
    Vollkron M; Voitl P; Ta J; Wieselthaler G; Schima H
    J Heart Lung Transplant; 2007 Aug; 26(8):819-25. PubMed ID: 17692786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of Implantable Rotary Blood Pump States With Class Noise.
    Ooi HL; Seera M; Ng SC; Lim CP; Loo CK; Lovell NH; Redmond SJ; Lim E
    IEEE J Biomed Health Inform; 2016 May; 20(3):829-837. PubMed ID: 25781963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical foundations of a Starling-like controller for rotary blood pumps.
    Salamonsen RF; Lim E; Gaddum N; AlOmari AH; Gregory SD; Stevens M; Mason DG; Fraser JF; Timms D; Karunanithi MK; Lovell NH
    Artif Organs; 2012 Sep; 36(9):787-96. PubMed ID: 22626056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.