These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17885790)

  • 1. Patient-specific three-dimensional composite bone models for teaching and operation planning.
    Matthews F; Messmer P; Raikov V; Wanner GA; Jacob AL; Regazzoni P; Egli A
    J Digit Imaging; 2009 Oct; 22(5):473-82. PubMed ID: 17885790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of different intraoperative 3-D image intensifiers in orthopedic trauma care.
    Stübig T; Kendoff D; Citak M; Geerling J; Khalafi A; Krettek C; Hüfner T
    J Trauma; 2009 Mar; 66(3):821-30. PubMed ID: 19276760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a generic 3D model of the distal femur.
    Schmutz B; Reynolds KJ; Slavotinek JP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):305-12. PubMed ID: 17132616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT.
    Livyatan H; Yaniv Z; Joskowicz L
    IEEE Trans Med Imaging; 2003 Nov; 22(11):1395-406. PubMed ID: 14606673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation study of 3D-printed anatomical models using 2 PLA printers for preoperative planning in trauma surgery, a human cadaver study.
    Brouwers L; Teutelink A; van Tilborg FAJB; de Jongh MAC; Lansink KWW; Bemelman M
    Eur J Trauma Emerg Surg; 2019 Dec; 45(6):1013-1020. PubMed ID: 29947848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D identification of trabecular bone fracture zone using an automatic image registration scheme: A validation study.
    Tassani S; Matsopoulos GK; Baruffaldi F
    J Biomech; 2012 Jul; 45(11):2035-40. PubMed ID: 22682259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of rapid prototyping and three-dimensional reconstruction modeling in the management of complex fractures.
    Bagaria V; Deshpande S; Rasalkar DD; Kuthe A; Paunipagar BK
    Eur J Radiol; 2011 Dec; 80(3):814-20. PubMed ID: 21256690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional imaging of bone from computerized tomography.
    Woolson ST; Dev P; Fellingham LL; Vassiliadis A
    Clin Orthop Relat Res; 1986 Jan; (202):239-48. PubMed ID: 3955956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging.
    Barratt DC; Chan CS; Edwards PJ; Penney GP; Slomczykowski M; Carter TJ; Hawkes DJ
    Med Image Anal; 2008 Jun; 12(3):358-74. PubMed ID: 18313973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D reconstruction of the proximal femur with low-dose digital stereoradiography.
    Le Bras A; Laporte S; Bousson V; Mitton D; De Guise JA; Laredo JD; Skalli W
    Comput Aided Surg; 2004; 9(3):51-7. PubMed ID: 15792937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CT-based patient-specific modeling of glenoid rim defects: a feasibility study.
    Diederichs G; Seim H; Meyer H; Issever AS; Link TM; Schröder RJ; Scheibel M
    AJR Am J Roentgenol; 2008 Nov; 191(5):1406-11. PubMed ID: 18941078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Navigated percutaneous lumbosacral interbody fusion: a feasibility study with three-dimensional surgical simulation and cadaveric experiment.
    Wang Y; Le DQ; Li H; Wang M; Bünger CE
    Spine (Phila Pa 1976); 2011 Jul; 36(16):E1105-11. PubMed ID: 21289578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIFT algorithm-based 3D pose estimation of femur.
    Zhang X; Zhu Y; Li C; Zhao J; Li G
    Biomed Mater Eng; 2014; 24(6):2847-55. PubMed ID: 25226990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic extraction of proximal femur contours from calibrated X-ray images using 3D statistical models: an in vitro study.
    Dong X; Zheng G
    Int J Med Robot; 2009 Jun; 5(2):213-22. PubMed ID: 19343704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-calibrating 3D-ultrasound-based bone registration for minimally invasive orthopedic surgery.
    Barratt DC; Penney GP; Chan CS; Slomczykowski M; Carter TJ; Edwards PJ; Hawkes DJ
    IEEE Trans Med Imaging; 2006 Mar; 25(3):312-23. PubMed ID: 16524087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intra-operative assessment of femoral antetorsion using ISO-C 3D: a cadaver study.
    Hawi N; Suero EM; Liodakis E; Decker S; Krettek C; Citak M
    Injury; 2014 Mar; 45(3):506-9. PubMed ID: 24268187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Value of 3-D CT in classifying acetabular fractures during orthopedic residency training.
    Garrett J; Halvorson J; Carroll E; Webb LX
    Orthopedics; 2012 May; 35(5):e615-20. PubMed ID: 22588400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraoperative 3D imaging in calcaneal fracture care-clinical implications and decision making.
    Geerling J; Kendoff D; Citak M; Zech S; Gardner MJ; Hüfner T; Krettek C; Richter M
    J Trauma; 2009 Mar; 66(3):768-73. PubMed ID: 19276751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional laminated paper model of the scaphoid from computed tomography.
    Kakizawa H; Toyota N; Akiyama Y; Kijima Y; Ishida O; Ito K
    Acta Radiol; 2007 Feb; 48(1):80-8. PubMed ID: 17325931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Value of 3D fluoroscopic imaging of acetabular fractures comparison to 2D fluoroscopy and CT imaging.
    Kendoff D; Gardner MJ; Citak M; Kfuri M; Thumes B; Krettek C; Hüfner T
    Arch Orthop Trauma Surg; 2008 Jun; 128(6):599-605. PubMed ID: 17680254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.