BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17885841)

  • 1. Hederyne A, a new antimicrobial polyacetylene from galls of Hedera rhombea Bean.
    Yamazoe S; Hasegawa K; Ito J; Mikami Y; Shigemori H
    J Asian Nat Prod Res; 2007; 9(6-8):537-40. PubMed ID: 17885841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth inhibitory indole acetic acid polyacetylenic ester from Japanese ivy (Hedera rhombea Bean).
    Yamazoe S; Hasegawa K; Shigemori H
    Phytochemistry; 2007 Jun; 68(12):1706-11. PubMed ID: 17532018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyacetylenes from the roots of Polyalthia debilis.
    Panthama N; Kanokmedhakul S; Kanokmedhakul K
    J Nat Prod; 2010 Aug; 73(8):1366-9. PubMed ID: 20795741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antiprotozoal polyacetylenes from the Tanzanian medicinal plant Cussonia zimmermannii.
    Senn M; Gunzenhauser S; Brun R; Séquin U
    J Nat Prod; 2007 Oct; 70(10):1565-9. PubMed ID: 17922552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marianins A and B, prenylated phenylpropanoids from Mariannaea camptospora.
    Fukuda T; Sudoh Y; Tsuchiya Y; Okuda T; Fujimori F; Igarashi Y
    J Nat Prod; 2011 May; 74(5):1327-30. PubMed ID: 21488655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Montiporic acid D, a new polyacetylene carboxylic acid from scleractinian coral Montipora digitata.
    Kodani S; Sato K; Higuchi T; Casareto BE; Suzuki Y
    Nat Prod Res; 2013 Oct; 27(20):1859-62. PubMed ID: 23432335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dendrazawaynes A and B, antifungal polyacetylenes from Dendranthema zawadskii (Asteraceae).
    Rahman MA; Cho SC; Song J; Mun HT; Moon SS
    Planta Med; 2007 Aug; 73(10):1089-94. PubMed ID: 17691057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oploxynes A and B, polyacetylenes from the stems of Oplopanax elatus.
    Yang MC; Kwon HC; Kim YJ; Lee KR; Yang HO
    J Nat Prod; 2010 May; 73(5):801-5. PubMed ID: 20387902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures and antimicrobial activities of pyridoacridine alkaloids isolated from different chromotypes of the ascidian Cystodytes dellechiajei.
    Bontemps N; Bry D; López-Legentil S; Simon-Levert A; Long C; Banaigs B
    J Nat Prod; 2010 Jun; 73(6):1044-8. PubMed ID: 20491501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxic C47-polyacetylene carboxylic acids from a marine sponge Pertrosia sp.
    Okamoto C; Nakao Y; Fujita T; Iwashita T; van Soest RW; Fusetani N; Matsunaga S
    J Nat Prod; 2007 Nov; 70(11):1816-9. PubMed ID: 17985844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two new polyacetylene glycosides from the roots of Codonopsis tangshen Oliv.
    Sun J; Wang L; Wang M; Wang Z; Li F
    Nat Prod Res; 2016 Oct; 30(20):2338-43. PubMed ID: 27109245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anticomplement activity of polyacetylenes from leaves of Dendropanax morbifera Leveille.
    Chung IM; Song HK; Kim SJ; Moon HI
    Phytother Res; 2011 May; 25(5):784-6. PubMed ID: 21520473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation, characterization and antimicrobial activities of polyacetylene glycosides from Coreopsis tinctoria Nutt.
    Guo J; Wang A; Yang K; Ding H; Hu Y; Yang Y; Huang S; Xu J; Liu T; Yang H; Xin Z
    Phytochemistry; 2017 Apr; 136():65-69. PubMed ID: 28104231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial activities of plant compounds against antibiotic-resistant Micrococcus luteus.
    Friedman M; Buick R; Elliott CT
    Int J Antimicrob Agents; 2006 Aug; 28(2):156-8. PubMed ID: 16844351
    [No Abstract]   [Full Text] [Related]  

  • 15. Antimicrobial activity of polyacetylenes from Bellis perennis and their synthetic derivatives.
    Avato P; Vitali C; Mongelli P; Tava A
    Planta Med; 1997 Dec; 63(6):503-7. PubMed ID: 9434600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyacetylenes from the leaves of Vernonia scorpioides (Asteraceae) and their antiproliferative and antiherpetic activities.
    Pollo LA; Bosi CF; Leite AS; Rigotto C; Kratz J; Simões CM; Fonseca DE; Coimbra D; Caramori G; Nepel A; Campos FR; Barison A; Biavatti MW
    Phytochemistry; 2013 Nov; 95():375-83. PubMed ID: 23937905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and activity of polyacetylene substituted 2-hydroxy acids, esters, and amides against microbes of clinical importance.
    Kyi S; Wongkattiya N; Warden AC; O'Shea MS; Deighton M; Macreadie I; Graichen FH
    Bioorg Med Chem Lett; 2010 Aug; 20(15):4555-7. PubMed ID: 20591665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and pharmacological progress on polyacetylenes isolated from the family apiaceae.
    Chen Y; Peng S; Luo Q; Zhang J; Guo Q; Zhang Y; Chai X
    Chem Biodivers; 2015 Apr; 12(4):474-502. PubMed ID: 25879495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new angucycline and a new butenolide isolated from lichen-derived Streptomyces spp.
    Motohashi K; Takagi M; Yamamura H; Hayakawa M; Shin-ya K
    J Antibiot (Tokyo); 2010 Sep; 63(9):545-8. PubMed ID: 20664606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antichlamydial sterol from the Red Sea sponge Callyspongia aff. implexa.
    Abdelmohsen UR; Cheng C; Reimer A; Kozjak-Pavlovic V; Ibrahim AK; Rudel T; Hentschel U; Edrada-Ebel R; Ahmed SA
    Planta Med; 2015 Mar; 81(5):382-7. PubMed ID: 25782033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.