BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 17885920)

  • 1. Isolation of Zn2+ as an endogenous agonist of GPR39 from fetal bovine serum.
    Yasuda S; Miyazaki T; Munechika K; Yamashita M; Ikeda Y; Kamizono A
    J Recept Signal Transduct Res; 2007; 27(4):235-46. PubMed ID: 17885920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPR39 signaling is stimulated by zinc ions but not by obestatin.
    Holst B; Egerod KL; Schild E; Vickers SP; Cheetham S; Gerlach LO; Storjohann L; Stidsen CE; Jones R; Beck-Sickinger AG; Schwartz TW
    Endocrinology; 2007 Jan; 148(1):13-20. PubMed ID: 16959833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein kinase inhibitor β enhances the constitutive activity of G-protein-coupled zinc receptor GPR39.
    Kovacs Z; Schacht T; Herrmann AK; Albrecht P; Lefkimmiatis K; Methner A
    Biochem J; 2014 Aug; 462(1):125-32. PubMed ID: 24869658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery and Characterization of Novel GPR39 Agonists Allosterically Modulated by Zinc.
    Sato S; Huang XP; Kroeze WK; Roth BL
    Mol Pharmacol; 2016 Dec; 90(6):726-737. PubMed ID: 27754899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of neuronal pH by the metabotropic Zn(2+)-sensing Gq-coupled receptor, mZnR/GPR39.
    Ganay T; Asraf H; Aizenman E; Bogdanovic M; Sekler I; Hershfinkel M
    J Neurochem; 2015 Dec; 135(5):897-907. PubMed ID: 26375174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An agonist of a zinc-sensing receptor GPR39 enhances tight junction assembly in intestinal epithelial cells via an AMPK-dependent mechanism.
    Pongkorpsakol P; Buasakdi C; Chantivas T; Chatsudthipong V; Muanprasat C
    Eur J Pharmacol; 2019 Jan; 842():306-313. PubMed ID: 30459126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comment on "Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake".
    Chartrel N; Alvear-Perez R; Leprince J; Iturrioz X; Reaux-Le Goazigo A; Audinot V; Chomarat P; Coge F; Nosjean O; Rodriguez M; Galizzi JP; Boutin JA; Vaudry H; Llorens-Cortes C
    Science; 2007 Feb; 315(5813):766; author reply 766. PubMed ID: 17289961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanism of Zn2+ agonism in the extracellular domain of GPR39.
    Storjohann L; Holst B; Schwartz TW
    FEBS Lett; 2008 Jul; 582(17):2583-8. PubMed ID: 18588883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc-mediated Neurotransmission in Alzheimer's Disease: A Potential Role of the GPR39 in Dementia.
    Rychlik M; Mlyniec K
    Curr Neuropharmacol; 2020; 18(1):2-13. PubMed ID: 31272355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated levels of alpha-synuclein blunt cellular signal transduction downstream of Gq protein-coupled receptors.
    Volta M; Lavdas AA; Obergasteiger J; Überbacher C; Picard A; Pramstaller PP; Hicks AA; Corti C
    Cell Signal; 2017 Jan; 30():82-91. PubMed ID: 27871937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pertussis toxin induces parallel loss of neuropeptide Y Y1 receptor dimers and Gi alpha subunit function in CHO cells.
    Parker SL; Parker MS; Sah R; Balasubramaniam A; Sallee FR
    Eur J Pharmacol; 2008 Jan; 579(1-3):13-25. PubMed ID: 17967449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning, identification and functional characterization of bovine free fatty acid receptor-1 (FFAR1/GPR40) in neutrophils.
    Manosalva C; Mena J; Velasquez Z; Colenso CK; Brauchi S; Burgos RA; Hidalgo MA
    PLoS One; 2015; 10(3):e0119715. PubMed ID: 25790461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms for activation of voltage-independent Ca2+ channels by endothelin-1/endothelin-A receptors.
    Kawanabe Y; Okamoto Y; Hashimoto N; Masaki T
    J Cardiovasc Pharmacol; 2004 Nov; 44 Suppl 1():S219-23. PubMed ID: 15838284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of ghrelin receptor activity in a rat pituitary cell line RC-4B/C.
    Falls HD; Dayton BD; Fry DG; Ogiela CA; Schaefer VG; Brodjian S; Reilly RM; Collins CA; Kaszubska W
    J Mol Endocrinol; 2006 Aug; 37(1):51-62. PubMed ID: 16901923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the selectivity of the Gαq inhibitor UBO-QIC: A comparison with the Gαi inhibitor pertussis toxin.
    Gao ZG; Jacobson KA
    Biochem Pharmacol; 2016 May; 107():59-66. PubMed ID: 26954502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Zinc-Sensing Receptor GPR39 in Physiology and as a Pharmacological Target.
    Laitakari A; Liu L; Frimurer TM; Holst B
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33918078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular pH regulates zinc signaling via an Asp residue of the zinc-sensing receptor (ZnR/GPR39).
    Cohen L; Asraf H; Sekler I; Hershfinkel M
    J Biol Chem; 2012 Sep; 287(40):33339-50. PubMed ID: 22879599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of agonist activity at G protein-coupled receptors: analysis of M2 muscarinic receptor signaling through Gi/o,Gs, and G15.
    Griffin MT; Figueroa KW; Liller S; Ehlert FJ
    J Pharmacol Exp Ther; 2007 Jun; 321(3):1193-207. PubMed ID: 17392404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GPR39-1b, the 5-transmembrane isoform of GPR39 interacts with neurotensin receptor NTSR1 and modifies its function.
    Yasuda S; Ishida J
    J Recept Signal Transduct Res; 2014 Aug; 34(4):307-12. PubMed ID: 24512471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Zn2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents.
    Fjellström O; Larsson N; Yasuda S; Tsuchida T; Oguma T; Marley A; Wennberg-Huldt C; Hovdal D; Fukuda H; Yoneyama Y; Sasaki K; Johansson A; Lundqvist S; Brengdahl J; Isaacs RJ; Brown D; Geschwindner S; Benthem L; Priest C; Turnbull A
    PLoS One; 2015; 10(12):e0145849. PubMed ID: 26720709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.