BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17886239)

  • 1. The chakragati mouse: a mouse model for rapid in vivo screening of antipsychotic drug candidates.
    Dawe GS; Ratty AK
    Biotechnol J; 2007 Nov; 2(11):1344-52. PubMed ID: 17886239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antipsychotic drugs dose-dependently suppress the spontaneous hyperactivity of the chakragati mouse.
    Dawe GS; Nagarajah R; Albert R; Casey DE; Gross KW; Ratty AK
    Neuroscience; 2010 Nov; 171(1):162-72. PubMed ID: 20816926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chakragati mouse shows deficits in prepulse inhibition of acoustic startle and latent inhibition.
    Verma V; Tan CH; Ong WY; Grigoryan GA; Jones CA; Stolzberg D; Salvi R; Gross KW; Ratty AK; Dawe GS
    Neurosci Res; 2008 Mar; 60(3):281-8. PubMed ID: 18164085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary evidence for reduced social interactions in Chakragati mutants modeling certain symptoms of schizophrenia.
    Torres G; Meeder BA; Hallas BH; Gross KW; Horowitz JM
    Brain Res; 2005 Jun; 1046(1-2):180-6. PubMed ID: 15882844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neurobehavioral screening of the ckr mouse mutant: implications for an animal model of schizophrenia.
    Torres G; Hallas BH; Vernace VA; Jones C; Gross KW; Horowitz JM
    Brain Res Bull; 2004 Jan; 62(4):315-26. PubMed ID: 14709346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ventricular size mapping in a transgenic model of schizophrenia.
    Torres G; Meeder BA; Hallas BH; Spernyak JA; Mazurchuk R; Jones C; Gross KW; Horowitz JM
    Brain Res Dev Brain Res; 2005 Jan; 154(1):35-44. PubMed ID: 15617753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity of behavioral and neurochemical dysfunction in the chakragati mouse: a novel genetic model of a movement disorder.
    Fitzgerald LW; Ratty AK; Teitler M; Gross KW; Glick SD
    Brain Res; 1993 Apr; 608(2):247-58. PubMed ID: 8495359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Evaluation of antipsychotic and relative drugs using disruption of prepulse inhibition as an animal model for schizophrenia].
    Suemaru K; Kohnomi S; Umeda K; Araki H
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2008 Jun; 28(3):121-6. PubMed ID: 18646597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cognitive impairment in schizophrenia: a review of developmental and genetic models, and pro-cognitive profile of the optimised D(3) > D(2) antagonist, S33138.
    Millan MJ; Brocco M
    Therapie; 2008; 63(3):187-229. PubMed ID: 18718210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antipsychotic drug actions on gene modulation and signaling mechanisms.
    Molteni R; Calabrese F; Racagni G; Fumagalli F; Riva MA
    Pharmacol Ther; 2009 Oct; 124(1):74-85. PubMed ID: 19540875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospholipase C-beta1 knockout mice exhibit endophenotypes modeling schizophrenia which are rescued by environmental enrichment and clozapine administration.
    McOmish CE; Burrows E; Howard M; Scarr E; Kim D; Shin HS; Dean B; van den Buuse M; Hannan AJ
    Mol Psychiatry; 2008 Jul; 13(7):661-72. PubMed ID: 17667964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of biomarkers in the discovery of novel anti-schizophrenia drugs.
    Mikkelsen JD; Thomsen MS; Hansen HH; Lichota J
    Drug Discov Today; 2010 Feb; 15(3-4):137-41. PubMed ID: 20036755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting information-processing deficit in schizophrenia: a novel approach to psychotherapeutic drug discovery.
    Hajós M
    Trends Pharmacol Sci; 2006 Jul; 27(7):391-8. PubMed ID: 16766049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuropharmacology of second-generation antipsychotic drugs: a validity of the serotonin-dopamine hypothesis.
    Kuroki T; Nagao N; Nakahara T
    Prog Brain Res; 2008; 172():199-212. PubMed ID: 18772034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of SB-269970, a 5-HT7 receptor antagonist, in mouse models predictive of antipsychotic-like activity.
    Galici R; Boggs JD; Miller KL; Bonaventure P; Atack JR
    Behav Pharmacol; 2008 Mar; 19(2):153-9. PubMed ID: 18332680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytokine hypothesis of schizophrenia pathogenesis: evidence from human studies and animal models.
    Watanabe Y; Someya T; Nawa H
    Psychiatry Clin Neurosci; 2010 Jun; 64(3):217-30. PubMed ID: 20602722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioral animal models of antipsychotic drug actions.
    Peleg-Raibstein D; Feldon J; Meyer U
    Handb Exp Pharmacol; 2012; (212):361-406. PubMed ID: 23129339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Commentary: genome-based CNS drug discovery: D-amino acid oxidase (DAAO) as a novel target for antipsychotic medications: progress and challenges.
    Williams M
    Biochem Pharmacol; 2009 Dec; 78(11):1360-5. PubMed ID: 19591808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Messing up with traffic: different effects of antipsychotic agents on glutamate receptor complexes in vivo.
    Del'guidice T; Beaulieu JM
    Mol Pharmacol; 2008 May; 73(5):1339-42. PubMed ID: 18314495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of a new class of potential multifunctional atypical antipsychotic agents targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors: design, synthesis, and effects on behavior.
    Butini S; Gemma S; Campiani G; Franceschini S; Trotta F; Borriello M; Ceres N; Ros S; Coccone SS; Bernetti M; De Angelis M; Brindisi M; Nacci V; Fiorini I; Novellino E; Cagnotto A; Mennini T; Sandager-Nielsen K; Andreasen JT; Scheel-Kruger J; Mikkelsen JD; Fattorusso C
    J Med Chem; 2009 Jan; 52(1):151-69. PubMed ID: 19072656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.