These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

753 related articles for article (PubMed ID: 17886343)

  • 1. Detection of the interaction between SNAP25 and rabphilin in neuroendocrine PC12 cells using the FLIM/FRET technique.
    Lee JD; Chang YF; Kao FJ; Kao LS; Lin CC; Lu AC; Shyu BC; Chiou SH; Yang DM
    Microsc Res Tech; 2008 Jan; 71(1):26-34. PubMed ID: 17886343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-depth fluorescence lifetime imaging analysis revealing SNAP25A-Rabphilin 3A interactions.
    Lee JD; Huang PC; Lin YC; Kao LS; Huang CC; Kao FJ; Lin CC; Yang DM
    Microsc Microanal; 2008 Dec; 14(6):507-18. PubMed ID: 18986604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The polybasic sequence in the C2B domain of rabphilin is required for the vesicle docking step in PC12 cells.
    Tsuboi T; Kanno E; Fukuda M
    J Neurochem; 2007 Feb; 100(3):770-9. PubMed ID: 17156129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new pair for inter- and intra-molecular FRET measurement.
    Yang X; Xu P; Xu T
    Biochem Biophys Res Commun; 2005 May; 330(3):914-20. PubMed ID: 15809083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking SNARE complex formation in live endocrine cells.
    An SJ; Almers W
    Science; 2004 Nov; 306(5698):1042-6. PubMed ID: 15528447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein.
    Millington M; Grindlay GJ; Altenbach K; Neely RK; Kolch W; Bencina M; Read ND; Jones AC; Dryden DT; Magennis SW
    Biophys Chem; 2007 May; 127(3):155-64. PubMed ID: 17336446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The C2B domain of rabphilin directly interacts with SNAP-25 and regulates the docking step of dense core vesicle exocytosis in PC12 cells.
    Tsuboi T; Fukuda M
    J Biol Chem; 2005 Nov; 280(47):39253-9. PubMed ID: 16203731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of fluorescence microscopy to visualise homotypic interactions of tomato spotted wilt virus nucleocapsid protein in living cells.
    Snippe M; Borst JW; Goldbach R; Kormelink R
    J Virol Methods; 2005 Apr; 125(1):15-22. PubMed ID: 15737412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein localization in living cells and tissues using FRET and FLIM.
    Chen Y; Mills JD; Periasamy A
    Differentiation; 2003 Dec; 71(9-10):528-41. PubMed ID: 14686950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of Rab3A dissociation during exocytosis: a study by total internal reflection microscopy.
    Lin CC; Huang CC; Lin KH; Cheng KH; Yang DM; Tsai YS; Ong RY; Huang YN; Kao LS
    J Cell Physiol; 2007 May; 211(2):316-26. PubMed ID: 17149709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells.
    Tramier M; Zahid M; Mevel JC; Masse MJ; Coppey-Moisan M
    Microsc Res Tech; 2006 Nov; 69(11):933-9. PubMed ID: 16941642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy.
    Calleja V; Ameer-Beg SM; Vojnovic B; Woscholski R; Downward J; Larijani B
    Biochem J; 2003 May; 372(Pt 1):33-40. PubMed ID: 12662152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging in situ protein-DNA interactions in the cell nucleus using FRET-FLIM.
    Cremazy FG; Manders EM; Bastiaens PI; Kramer G; Hager GL; van Munster EB; Verschure PJ; Gadella TJ; van Driel R
    Exp Cell Res; 2005 Oct; 309(2):390-6. PubMed ID: 16040027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging FRET between spectrally similar GFP molecules in single cells.
    Harpur AG; Wouters FS; Bastiaens PI
    Nat Biotechnol; 2001 Feb; 19(2):167-9. PubMed ID: 11175733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Setup and characterization of a multiphoton FLIM instrument for protein-protein interaction measurements in living cells.
    Waharte F; Spriet C; Héliot L
    Cytometry A; 2006 Apr; 69(4):299-306. PubMed ID: 16498675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair.
    Albertazzi L; Arosio D; Marchetti L; Ricci F; Beltram F
    Photochem Photobiol; 2009; 85(1):287-97. PubMed ID: 18764891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual function for Munc-18 in exocytosis of PC12 cells.
    Schütz D; Zilly F; Lang T; Jahn R; Bruns D
    Eur J Neurosci; 2005 May; 21(9):2419-32. PubMed ID: 15932600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring FRET using time-resolved FLIM.
    Morton PE; Parsons M
    Methods Mol Biol; 2011; 769():403-13. PubMed ID: 21748691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.