BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17886659)

  • 1. [Research advances in mathematical model of coniferous trees cold hardiness].
    Zhang G; Wang AF
    Ying Yong Sheng Tai Xue Bao; 2007 Jul; 18(7):1610-6. PubMed ID: 17886659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life-history correlations with seasonal cold hardiness in maritime pine.
    Prada E; Climent J; Alía R; Díaz R
    Am J Bot; 2016 Dec; 103(12):2126-2135. PubMed ID: 27999078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cold hardiness of Pinus ponderosa, P. banksian and P. tabulaeformis].
    Gong Y; Zhou Y; Fan J; Liu Y; Pang K
    Ying Yong Sheng Tai Xue Bao; 2006 Aug; 17(8):1389-92. PubMed ID: 17066689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Electrical impedance spectroscopy method for measuring cold hardiness of plants].
    Zhang G; Xiao JZ; Chen DF
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):19-26. PubMed ID: 15692174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold hardiness of interspecific hybrids between Pinus strobus and P. wallichiana measured by post-freezing needle electrolyte leakage.
    Lu P; Colombo SJ; Sinclair RW
    Tree Physiol; 2007 Feb; 27(2):243-50. PubMed ID: 17241966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A semi-physiological model of cold hardening and dehardening in walnut stem.
    Poirier M; Lacointe A; Améglio T
    Tree Physiol; 2010 Dec; 30(12):1555-69. PubMed ID: 21030404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Champions of winter survival: cold acclimation and molecular regulation of cold hardiness in evergreen conifers.
    Chang CY; Bräutigam K; Hüner NPA; Ensminger I
    New Phytol; 2021 Jan; 229(2):675-691. PubMed ID: 32869329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of intraspecific variation in thermal responses for estimating an elevational cline in the timing of cold hardening in a sub-boreal conifer.
    Ishizuka W; Ono K; Hara T; Goto S
    Plant Biol (Stuttg); 2015 Jan; 17(1):177-85. PubMed ID: 24988996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): environmental and genetic considerations.
    Bansal S; St Clair JB; Harrington CA; Gould PJ
    Glob Chang Biol; 2015 Oct; 21(10):3814-26. PubMed ID: 25920066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding plant cold hardiness: an opinion.
    Gusta LV; Wisniewski M
    Physiol Plant; 2013 Jan; 147(1):4-14. PubMed ID: 22409670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic modelling of cold-hardiness in tea buds by imitating past temperature memory.
    Kimura K; Yasutake D; Oki T; Yoshida K; Kitano M
    Ann Bot; 2021 Feb; 127(3):317-326. PubMed ID: 33247901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Potential impact of seasonal temperature increase pattern on the succession of coniferous-broadleaved Korean pine mixed forest in Xiaoxing'an Mountain].
    Zhou DH; He HS; Li XZ; Zhou CH
    Ying Yong Sheng Tai Xue Bao; 2007 Sep; 18(9):1925-31. PubMed ID: 18062291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eyeing emergence: modified treatments for terminating dormancy of conifer seeds.
    Feurtado JA; Kermode AR
    Methods Mol Biol; 2011; 773():53-64. PubMed ID: 21898249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Relationships between coefficient of variation of diameter and height and competition index of main coniferous trees in Changbai Mountains].
    Zhao JH; Kang XG; Zhang HD; Liu Y
    Ying Yong Sheng Tai Xue Bao; 2009 Aug; 20(8):1832-7. PubMed ID: 19947199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in carbohydrates, ABA and bark proteins during seasonal cold acclimation and deacclimation in Hydrangea species differing in cold hardiness.
    Pagter M; Jensen CR; Petersen KK; Liu F; Arora R
    Physiol Plant; 2008 Nov; 134(3):473-85. PubMed ID: 18636985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological ecology of overwintering in the hatchling painted turtle: multiple-scale variation in response to environmental stress.
    Costanzo JP; Dinkelacker SA; Iverson JB; Lee RE
    Physiol Biochem Zool; 2004; 77(1):74-99. PubMed ID: 15057719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.
    Michelot A; Simard S; Rathgeber C; Dufrêne E; Damesin C
    Tree Physiol; 2012 Aug; 32(8):1033-45. PubMed ID: 22718524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Logging residue removal after thinning in boreal forests: long-term impact on the nutrient status of Norway spruce and Scots pine needles.
    Luiro J; Kukkola M; Saarsalmi A; Tamminen P; Helmisaari HS
    Tree Physiol; 2010 Jan; 30(1):78-88. PubMed ID: 19934174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of three cold hardiness tests for conifer seedlings.
    Burr KE; Tinus RW; Wallner SJ; King RM
    Tree Physiol; 1990 Dec; 6(4):351-69. PubMed ID: 14972928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended alternating-temperature cold acclimation and culture duration improve pear shoot cryopreservation.
    Chang Y; Reed BM
    Cryobiology; 2000 Jun; 40(4):311-22. PubMed ID: 10924263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.