These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 17887716)

  • 21. Synthesis and spectroscopic characterization of solution processable highly ordered polythiophene-carbon nanotube nanohybrid structures.
    Schuettfort T; Snaith HJ; Nish A; Nicholas RJ
    Nanotechnology; 2010 Jan; 21(2):025201. PubMed ID: 19955610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasma-assembled carbon nanotubes: electric field-related effects.
    Levchenko I; Ostrikov K; Keidar M
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6112-22. PubMed ID: 19198353
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diameter-dependent elastic modulus supports the metastable-catalyst growth of carbon nanotubes.
    Lee K; Lukić B; Magrez A; Seo JW; Briggs GA; Kulik AJ; Forró L
    Nano Lett; 2007 Jun; 7(6):1598-602. PubMed ID: 17503869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photomechanical actuation in polymer-nanotube composites.
    Ahir SV; Terentjev EM
    Nat Mater; 2005 Jun; 4(6):491-5. PubMed ID: 15880115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electron transport behavior of individual zinc oxide coated single-walled carbon nanotubes.
    Lin CC; Chu BT; Tobias G; Sahakalkan S; Roth S; Green ML; Chen SY
    Nanotechnology; 2009 Mar; 20(10):105703. PubMed ID: 19417531
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Field-enhanced photocurrent spectroscopy of excitonic states in single-wall carbon nanotubes.
    Mohite A; Lin JT; Sumanasekera G; Alphenaar BW
    Nano Lett; 2006 Jul; 6(7):1369-73. PubMed ID: 16834413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Progress on mechanics of carbon nanotubes and derived materials.
    Salvetat JP; Bhattacharyya S; Pipes RB
    J Nanosci Nanotechnol; 2006 Jul; 6(7):1857-82. PubMed ID: 17025101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hysteresis in a carbon nanotube based electroactive polymer microfiber actuator: numerical modeling.
    Sohn K; Shin SR; Park SJ; Kim SJ; Yi BJ; Han SY; Kim SI
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3974-9. PubMed ID: 18047099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime.
    Gómez-Navarro C; de Pablo PJ; Gómez-Herrero J; Biel B; Garcia-Vidal FJ; Rubio A; Flores F
    Nat Mater; 2005 Jul; 4(7):534-9. PubMed ID: 15965479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How does a carbon nanotube grow? An in situ investigation on the cap evolution.
    Jin C; Suenaga K; Iijima S
    ACS Nano; 2008 Jun; 2(6):1275-9. PubMed ID: 19206345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photocurrent imaging of charge transport barriers in carbon nanotube devices.
    Balasubramanian K; Burghard M; Kern K; Scolari M; Mews A
    Nano Lett; 2005 Mar; 5(3):507-10. PubMed ID: 15755103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The bulk piezoresistive characteristics of carbon nanotube composites for strain sensing of structures.
    Kang I; Joung KY; Choi GR; Schulz MJ; Choi YS; Hwang SH; Ko HS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3736-9. PubMed ID: 18047048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling a suspended nanotube oscillator.
    Ustünel H; Roundy D; Arias TA
    Nano Lett; 2005 Mar; 5(3):523-6. PubMed ID: 15755107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon nanotube--poly(3-octylthiophene) composite photovoltaic cells.
    Carroll DL; Czerw R; Harrison B
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2204-7. PubMed ID: 17025151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical functionalization of carbon nanotubes.
    Sinnott SB
    J Nanosci Nanotechnol; 2002 Apr; 2(2):113-23. PubMed ID: 12908295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bound excitons in metallic single-walled carbon nanotubes.
    Deslippe J; Spataru CD; Prendergast D; Louie SG
    Nano Lett; 2007 Jun; 7(6):1626-30. PubMed ID: 17508770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal-induced gap states at a carbon-nanotube intramolecular heterojunction observed by scanning tunneling microscopy.
    Ruppalt LB; Lyding JW
    Small; 2007 Feb; 3(2):280-4. PubMed ID: 17191289
    [No Abstract]   [Full Text] [Related]  

  • 38. Stability and signatures of biexcitons in carbon nanotubes.
    Pedersen TG; Pedersen K; Cornean HD; Duclos P
    Nano Lett; 2005 Feb; 5(2):291-4. PubMed ID: 15794613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays.
    Zhang X; Li Q; Tu Y; Li Y; Coulter JY; Zheng L; Zhao Y; Jia Q; Peterson DE; Zhu Y
    Small; 2007 Feb; 3(2):244-8. PubMed ID: 17262764
    [No Abstract]   [Full Text] [Related]  

  • 40. Influence of nanotube length on the optical and conductivity properties of thin single-wall carbon nanotube networks.
    Simien D; Fagan JA; Luo W; Douglas JF; Migler K; Obrzut J
    ACS Nano; 2008 Sep; 2(9):1879-84. PubMed ID: 19206428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.