BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 17887731)

  • 1. Restricted backbone conformational and motional flexibilities of loops containing peptidyl-proline bonds dominate the enzyme activity of staphylococcal nuclease.
    Shan L; Tong Y; Xie T; Wang M; Wang J
    Biochemistry; 2007 Oct; 46(41):11504-13. PubMed ID: 17887731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of proline mutations on the folding of staphylococcal nuclease.
    Maki K; Ikura T; Hayano T; Takahashi N; Kuwajima K
    Biochemistry; 1999 Feb; 38(7):2213-23. PubMed ID: 10026306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic folding and cis/trans prolyl isomerization of staphylococcal nuclease. A study by stopped-flow absorption, stopped-flow circular dichroism, and molecular dynamics simulations.
    Ikura T; Tsurupa GP; Kuwajima K
    Biochemistry; 1997 May; 36(21):6529-38. PubMed ID: 9174370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling between trans/cis proline isomerization and protein stability in staphylococcal nuclease.
    Truckses DM; Somoza JR; Prehoda KE; Miller SC; Markley JL
    Protein Sci; 1996 Sep; 5(9):1907-16. PubMed ID: 8880915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of the C-terminal loop L137-S141 for the folding and folding stability of staphylococcal nuclease.
    Wang M; Feng Y; Yao H; Wang J
    Biochemistry; 2010 May; 49(20):4318-26. PubMed ID: 20415411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic evidence for folding and unfolding intermediates in staphylococcal nuclease.
    Walkenhorst WF; Green SM; Roder H
    Biochemistry; 1997 May; 36(19):5795-805. PubMed ID: 9153420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of prolyl isomerase on the folding reactions of staphylococcal nuclease.
    Veeraraghavan S; Nall BT; Fink AL
    Biochemistry; 1997 Dec; 36(49):15134-9. PubMed ID: 9398241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two conformational states of Turkey ovomucoid third domain at low pH: three-dimensional structures, internal dynamics, and interconversion kinetics and thermodynamics.
    Song J; Laskowski M; Qasim MA; Markley JL
    Biochemistry; 2003 Jun; 42(21):6380-91. PubMed ID: 12767219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of amino acid replacements of glycine 20 on conformational stability and catalysis of staphylococcal nuclease.
    Feng Y; Huang S; Zhang W; Zeng Z; Zou X; Zhong L; Peng J; Jing G
    Biochimie; 2004 Dec; 86(12):893-901. PubMed ID: 15667939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two peptide fragments G55-I72 and K97-A109 from staphylococcal nuclease exhibit different behaviors in conformational preferences for helix formation.
    Wang M; Shan L; Wang J
    Biopolymers; 2006 Oct; 83(3):268-79. PubMed ID: 16767771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proline isomerism in staphylococcal nuclease characterized by NMR and site-directed mutagenesis.
    Evans PA; Dobson CM; Kautz RA; Hatfull G; Fox RO
    Nature; 1987 Sep 17-23; 329(6136):266-8. PubMed ID: 3627269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR strategy for determining Xaa-Pro peptide bond configurations in proteins: mutants of staphylococcal nuclease with altered configuration at proline-117.
    Hinck AP; Eberhardt ES; Markley JL
    Biochemistry; 1993 Nov; 32(44):11810-8. PubMed ID: 8218252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions to protein entropy and heat capacity from bond vector motions measured by NMR spin relaxation.
    Yang D; Mok YK; Forman-Kay JD; Farrow NA; Kay LE
    J Mol Biol; 1997 Oct; 272(5):790-804. PubMed ID: 9368658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of C-terminal region of Staphylococcal nuclease for foldability, stability, and activity.
    Hirano S; Mihara K; Yamazaki Y; Kamikubo H; Imamoto Y; Kataoka M
    Proteins; 2002 Nov; 49(2):255-65. PubMed ID: 12211005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational features of a truncated staphylococcal nuclease R (SNR135) and their implications for catalysis.
    Zhou B; Jing GZ
    Arch Biochem Biophys; 1998 Dec; 360(1):33-40. PubMed ID: 9826426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress and strain in staphylococcal nuclease.
    Hodel A; Kautz RA; Jacobs MD; Fox RO
    Protein Sci; 1993 May; 2(5):838-50. PubMed ID: 8495201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The native-like interactions between SNase121 and SNase(111-143) fragments induce the recovery of their native-like structures and the ability to degrade DNA.
    Geng Y; Feng Y; Xie T; Shan L; Wang J
    Biochemistry; 2009 Sep; 48(36):8692-703. PubMed ID: 19658434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of the omega-loop in the active site of staphylococcal nuclease. 2. Effects on protein structure and dynamics.
    Baldisseri DM; Torchia DA; Poole LB; Gerlt JA
    Biochemistry; 1991 Apr; 30(15):3628-33. PubMed ID: 2015220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational preferences of proline analogues with different ring size.
    Jhon JS; Kang YK
    J Phys Chem B; 2007 Apr; 111(13):3496-507. PubMed ID: 17388495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of the [E43S]SNase-ssDNA-Cd(2+) complex: structural insight into the action of nuclease on ssDNA.
    Xie T; Feng Y; Shan L; Wang J
    Arch Biochem Biophys; 2013 Apr; 532(2):103-13. PubMed ID: 23416741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.