BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 17887731)

  • 21. Engineered disulfide bonds in staphylococcal nuclease: effects on the stability and conformation of the folded protein.
    Hinck AP; Truckses DM; Markley JL
    Biochemistry; 1996 Aug; 35(32):10328-38. PubMed ID: 8756688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deletion of the omega-loop in the active site of staphylococcal nuclease. 1. Effect on catalysis and stability.
    Poole LB; Loveys DA; Hale SP; Gerlt JA; Stanczyk SM; Bolton PH
    Biochemistry; 1991 Apr; 30(15):3621-7. PubMed ID: 2015219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational preferences and cis-trans isomerization of azaproline residue.
    Kang YK; Byun BJ
    J Phys Chem B; 2007 May; 111(19):5377-85. PubMed ID: 17439267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of proline and glycine residues on dynamics and barriers of loop formation in polypeptide chains.
    Krieger F; Möglich A; Kiefhaber T
    J Am Chem Soc; 2005 Mar; 127(10):3346-52. PubMed ID: 15755151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of a specific hydrogen bond (N138ND2-Q106O) on conformational integrity, stability, and activity of staphylococcal nuclease.
    Huang S; Yin J; Feng Y; Jing G
    Arch Biochem Biophys; 2003 Dec; 420(1):87-94. PubMed ID: 14622978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A peptide model for proline isomerism in the unfolded state of staphylococcal nuclease.
    Raleigh DP; Evans PA; Pitkeathly M; Dobson CM
    J Mol Biol; 1992 Nov; 228(2):338-42. PubMed ID: 1453444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of glycosylation on cis/trans isomerization of prolines in IgA1-hinge peptide.
    Narimatsu Y; Kubota T; Furukawa S; Morii H; Narimatsu H; Yamasaki K
    J Am Chem Soc; 2010 Apr; 132(16):5548-9. PubMed ID: 20355726
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorylation effects on cis/trans isomerization and the backbone conformation of serine-proline motifs: accelerated molecular dynamics analysis.
    Hamelberg D; Shen T; McCammon JA
    J Am Chem Soc; 2005 Feb; 127(6):1969-74. PubMed ID: 15701032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proline cis-trans isomerization in staphylococcal nuclease: multi-substrate free energy perturbation calculations.
    Hodel A; Rice LM; Simonson T; Fox RO; Brünger AT
    Protein Sci; 1995 Apr; 4(4):636-54. PubMed ID: 7613463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-proline cis peptide bonds in proteins.
    Jabs A; Weiss MS; Hilgenfeld R
    J Mol Biol; 1999 Feb; 286(1):291-304. PubMed ID: 9931267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of cis-proline analogs on peptide conformation.
    Che Y; Marshall GR
    Biopolymers; 2006 Apr; 81(5):392-406. PubMed ID: 16358327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational analysis of the first observed non-proline cis-peptide bond occurring within the complementarity determining region (CDR) of an antibody.
    Bates PA; Dokurno P; Freemont PS; Sternberg MJ
    J Mol Biol; 1998 Dec; 284(3):549-55. PubMed ID: 9826497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Loop propensity of the sequence YKGQP from staphylococcal nuclease: implications for the folding of nuclease.
    Patel S; Sasidhar YU
    J Pept Sci; 2007 Oct; 13(10):679-92. PubMed ID: 17787022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Searching for folding initiation sites of staphylococcal nuclease: a study of N-terminal short fragments.
    Dai J; Wang X; Feng Y; Fan G; Wang J
    Biopolymers; 2004 Oct; 75(3):229-41. PubMed ID: 15378482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformational preference and cis-trans isomerization of 4-methylproline residues.
    Kang YK; Byun BJ; Park HS
    Biopolymers; 2011 Jan; 95(1):51-61. PubMed ID: 20725948
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NMR analysis of staphylococcal nuclease thermal quench refolding kinetics.
    Kautz RA; Fox RO
    Protein Sci; 1993 May; 2(5):851-8. PubMed ID: 8495202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of Asn(2) and Glu(7) residues in the oxidative folding and on the conformation of the N-terminal loop of apamin.
    Le-Nguyen D; Chiche L; Hoh F; Martin-Eauclaire MF; Dumas C; Nishi Y; Kobayashi Y; Aumelas A
    Biopolymers; 2007 Aug 5-15; 86(5-6):447-62. PubMed ID: 17486576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformational preferences of non-prolyl and prolyl residues.
    Kang YK
    J Phys Chem B; 2006 Oct; 110(42):21338-48. PubMed ID: 17048963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel.
    Lummis SC; Beene DL; Lee LW; Lester HA; Broadhurst RW; Dougherty DA
    Nature; 2005 Nov; 438(7065):248-52. PubMed ID: 16281040
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.