These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 17887772)

  • 21. pH-conductivity hybrid gradient cation-exchange chromatography for process-scale monoclonal antibody purification.
    Zhou JX; Dermawan S; Solamo F; Flynn G; Stenson R; Tressel T; Guhan S
    J Chromatogr A; 2007 Dec; 1175(1):69-80. PubMed ID: 17980374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Paper-PEG-based membranes for hydrophobic interaction chromatography: purification of monoclonal antibody.
    Yu D; Chen X; Pelton R; Ghosh R
    Biotechnol Bioeng; 2008 Apr; 99(6):1434-42. PubMed ID: 17972326
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scale-up of monoclonal antibody purification processes.
    Aldington S; Bonnerjea J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Mar; 848(1):64-78. PubMed ID: 17224311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The distinctive separation attributes of mixed-mode resins and their application in monoclonal antibody downstream purification process.
    Chen J; Tetrault J; Zhang Y; Wasserman A; Conley G; Dileo M; Haimes E; Nixon AE; Ley A
    J Chromatogr A; 2010 Jan; 1217(2):216-24. PubMed ID: 19819462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Designing new monoclonal antibody purification processes using mixed-mode chromatography sorbents.
    Toueille M; Uzel A; Depoisier JF; Gantier R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Apr; 879(13-14):836-43. PubMed ID: 21439915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA spike studies for demonstrating improved clearance on chromatographic media.
    Butler MD; Kluck B; Bentley T
    J Chromatogr A; 2009 Oct; 1216(41):6938-45. PubMed ID: 19733359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An improved, inexpensive procedure for the large-scale purification of recombinant human erythropoietin.
    Hu Y; Chen S; Xu M; Zhang S
    Biotechnol Appl Biochem; 2004 Aug; 40(Pt 1):89-94. PubMed ID: 15270711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. State-of-the-art in downstream processing of monoclonal antibodies: process trends in design and validation.
    Marichal-Gallardo PA; Alvarez MM
    Biotechnol Prog; 2012 Jul; 28(4):899-916. PubMed ID: 22641473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of high-performance tangential flow filtration (HPTFF) to the purification of a human pharmaceutical antibody fragment expressed in Escherichia coli.
    Lebreton B; Brown A; van Reis R
    Biotechnol Bioeng; 2008 Aug; 100(5):964-74. PubMed ID: 18393314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aqueous two-phase systems: A viable platform in the manufacturing of biopharmaceuticals.
    Rosa PA; Ferreira IF; Azevedo AM; Aires-Barros MR
    J Chromatogr A; 2010 Apr; 1217(16):2296-305. PubMed ID: 19962707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Designing cost-effective biopharmaceutical facilities using mixed-integer optimization.
    Liu S; Simaria AS; Farid SS; Papageorgiou LG
    Biotechnol Prog; 2013; 29(6):1472-83. PubMed ID: 23956206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of monoclonal antibody and phenolic extraction from transgenic Lemna for purification process development.
    Woodard SL; Wilken LR; Barros GO; White SG; Nikolov ZL
    Biotechnol Bioeng; 2009 Oct; 104(3):562-71. PubMed ID: 19575415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decision-support software for the industrial-scale chromatographic purification of antibodies.
    Chhatre S; Thillaivinayagalingam P; Francis R; Titchener-Hooker NJ; Newcombe AR; Keshavarz-Moore E
    Biotechnol Prog; 2007; 23(4):888-94. PubMed ID: 17630695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alternative separation steps for monoclonal antibody purification: combination of centrifugal partitioning chromatography and precipitation.
    Oelmeier SA; Ladd-Effio C; Hubbuch J
    J Chromatogr A; 2013 Dec; 1319():118-26. PubMed ID: 24182866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new, integrated, continuous purification process template for monoclonal antibodies: Process modeling and cost of goods studies.
    Xenopoulos A
    J Biotechnol; 2015 Nov; 213():42-53. PubMed ID: 25959171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of a filter train for precipitate removal in monoclonal antibody downstream processing.
    Kandula S; Babu S; Jin M; Shukla AA
    Biotechnol Appl Biochem; 2009 Oct; 54(3):149-55. PubMed ID: 19656082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aggregates in monoclonal antibody manufacturing processes.
    Vázquez-Rey M; Lang DA
    Biotechnol Bioeng; 2011 Jul; 108(7):1494-508. PubMed ID: 21480193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploitation of the adsorptive properties of depth filters for host cell protein removal during monoclonal antibody purification.
    Yigzaw Y; Piper R; Tran M; Shukla AA
    Biotechnol Prog; 2006; 22(1):288-96. PubMed ID: 16454522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-dimensional fractionation and characterization of crude protein mixtures: toward establishment of a database of protein purification process development parameters.
    Nfor BK; Ahamed T; Pinkse MW; van der Wielen LA; Verhaert PD; van Dedem GW; Eppink MH; van de Sandt EJ; Ottens M
    Biotechnol Bioeng; 2012 Dec; 109(12):3070-83. PubMed ID: 22688729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient MILP formulations for the optimal synthesis of chromatographic protein purification processes.
    Vásquez-Alvarez E; Pinto JM
    J Biotechnol; 2004 Jun; 110(3):295-311. PubMed ID: 15163520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.