These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 17887772)
81. Using chromatography in downstream processing. Becker C Aust J Biotechnol; 1989 Jan; 3(1):18-9. PubMed ID: 2485313 [TBL] [Abstract][Full Text] [Related]
82. Process cost and facility considerations in the selection of primary cell culture clarification technology. Felo M; Christensen B; Higgins J Biotechnol Prog; 2013; 29(5):1239-45. PubMed ID: 23847160 [TBL] [Abstract][Full Text] [Related]
83. Demonstrating β-glucan and yeast peptide clearance in biopharmaceutical downstream processes. Jiang C; Scherfner S; Dick LW; Mahon D; Qiu D; Cheng KC; Shukla AA Biotechnol Prog; 2011; 27(2):442-50. PubMed ID: 21365784 [TBL] [Abstract][Full Text] [Related]
84. Purification of a human immunoglobulin G1 monoclonal antibody from transgenic tobacco using membrane chromatographic processes. Yu D; McLean MD; Hall JC; Ghosh R J Chromatogr A; 2008 Apr; 1187(1-2):128-37. PubMed ID: 18313066 [TBL] [Abstract][Full Text] [Related]
85. Economic assessment of batch biodiesel production processes using homogeneous and heterogeneous alkali catalysts. Sakai T; Kawashima A; Koshikawa T Bioresour Technol; 2009 Jul; 100(13):3268-76. PubMed ID: 19269814 [TBL] [Abstract][Full Text] [Related]
86. New Q membrane scale-down model for process-scale antibody purification. Zhou JX; Tressel T; Gottschalk U; Solamo F; Pastor A; Dermawan S; Hong T; Reif O; Mora J; Hutchison F; Murphy M J Chromatogr A; 2006 Nov; 1134(1-2):66-73. PubMed ID: 16965788 [TBL] [Abstract][Full Text] [Related]
87. Performance comparison of protein A affinity resins for the purification of monoclonal antibodies. Swinnen K; Krul A; Van Goidsenhoven I; Van Tichelt N; Roosen A; Van Houdt K J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Mar; 848(1):97-107. PubMed ID: 16765655 [TBL] [Abstract][Full Text] [Related]
88. Optimization of a micro-scale, high throughput process development tool and the demonstration of comparable process performance and product quality with biopharmaceutical manufacturing processes. Evans ST; Stewart KD; Afdahl C; Patel R; Newell KJ J Chromatogr A; 2017 Jul; 1506():73-81. PubMed ID: 28551021 [TBL] [Abstract][Full Text] [Related]
95. Modeling the Downstream Processing of Monoclonal Antibodies Reveals Cost Advantages for Continuous Methods for a Broad Range of Manufacturing Scales. Hummel J; Pagkaliwangan M; Gjoka X; Davidovits T; Stock R; Ransohoff T; Gantier R; Schofield M Biotechnol J; 2019 Feb; 14(2):e1700665. PubMed ID: 29341493 [TBL] [Abstract][Full Text] [Related]
96. High-throughput screening of chromatographic separations: III. Monoclonal antibodies on ceramic hydroxyapatite. Wensel DL; Kelley BD; Coffman JL Biotechnol Bioeng; 2008 Aug; 100(5):839-54. PubMed ID: 18551522 [TBL] [Abstract][Full Text] [Related]
97. Predictive chromatographic simulations for the optimization of recovery and aggregate clearance during the capture of monoclonal antibodies. Teeters M; Benner T; Bezila D; Shen H; Velayudhan A; Alred P J Chromatogr A; 2009 Aug; 1216(33):6134-40. PubMed ID: 19604509 [TBL] [Abstract][Full Text] [Related]
98. Accelerated purification process development of monoclonal antibodies for shortening time to clinic. Design and case study of chromatography processes. Ishihara T; Kadoya T J Chromatogr A; 2007 Dec; 1176(1-2):149-56. PubMed ID: 18035359 [TBL] [Abstract][Full Text] [Related]
99. A methodology for the comparative evaluation of alternative bioseparation technologies. Tran R; Zhou Y; Lacki KM; Titchener-Hooker NJ Biotechnol Prog; 2008; 24(5):1007-25. PubMed ID: 19194909 [TBL] [Abstract][Full Text] [Related]
100. Development of a novel adenovirus purification process utilizing selective precipitation of cellular DNA. Goerke AR; To BC; Lee AL; Sagar SL; Konz JO Biotechnol Bioeng; 2005 Jul; 91(1):12-21. PubMed ID: 15889400 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]