These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 17887772)

  • 81. Using chromatography in downstream processing.
    Becker C
    Aust J Biotechnol; 1989 Jan; 3(1):18-9. PubMed ID: 2485313
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Process cost and facility considerations in the selection of primary cell culture clarification technology.
    Felo M; Christensen B; Higgins J
    Biotechnol Prog; 2013; 29(5):1239-45. PubMed ID: 23847160
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Demonstrating β-glucan and yeast peptide clearance in biopharmaceutical downstream processes.
    Jiang C; Scherfner S; Dick LW; Mahon D; Qiu D; Cheng KC; Shukla AA
    Biotechnol Prog; 2011; 27(2):442-50. PubMed ID: 21365784
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Purification of a human immunoglobulin G1 monoclonal antibody from transgenic tobacco using membrane chromatographic processes.
    Yu D; McLean MD; Hall JC; Ghosh R
    J Chromatogr A; 2008 Apr; 1187(1-2):128-37. PubMed ID: 18313066
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Economic assessment of batch biodiesel production processes using homogeneous and heterogeneous alkali catalysts.
    Sakai T; Kawashima A; Koshikawa T
    Bioresour Technol; 2009 Jul; 100(13):3268-76. PubMed ID: 19269814
    [TBL] [Abstract][Full Text] [Related]  

  • 86. New Q membrane scale-down model for process-scale antibody purification.
    Zhou JX; Tressel T; Gottschalk U; Solamo F; Pastor A; Dermawan S; Hong T; Reif O; Mora J; Hutchison F; Murphy M
    J Chromatogr A; 2006 Nov; 1134(1-2):66-73. PubMed ID: 16965788
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Performance comparison of protein A affinity resins for the purification of monoclonal antibodies.
    Swinnen K; Krul A; Van Goidsenhoven I; Van Tichelt N; Roosen A; Van Houdt K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Mar; 848(1):97-107. PubMed ID: 16765655
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Optimization of a micro-scale, high throughput process development tool and the demonstration of comparable process performance and product quality with biopharmaceutical manufacturing processes.
    Evans ST; Stewart KD; Afdahl C; Patel R; Newell KJ
    J Chromatogr A; 2017 Jul; 1506():73-81. PubMed ID: 28551021
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Large-scale processing & high-throughput perfusion chromatography.
    Fulton SP; Shahidi AJ; Gordon NF; Afeyan NB
    Biotechnology (N Y); 1992 Jun; 10(6):635-9. PubMed ID: 1368883
    [No Abstract]   [Full Text] [Related]  

  • 90. Scale-up of protein purification: downstream processing issues.
    Milne JJ
    Methods Mol Biol; 2011; 681():73-85. PubMed ID: 20978961
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Continuous antibody purification using precipitation: an important step forward.
    Velayudhan A
    Biotechnol J; 2014 Jun; 9(6):717-8. PubMed ID: 24706587
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Chromatographic separation of three monoclonal antibody variants using multicolumn countercurrent solvent gradient purification (MCSGP).
    Müller-Späth T; Aumann L; Melter L; Ströhlein G; Morbidelli M
    Biotechnol Bioeng; 2008 Aug; 100(6):1166-77. PubMed ID: 18553396
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Large-scale production of major house dust mite allergen der f 2 mutant (C8/119S) in Escherichia coli.
    Koyanagi S; Maeda T; Murakami T; Kawatsu K; Sugawara K; Miyatsu Y; Mizokami H
    J Biosci Bioeng; 2008 Oct; 106(4):387-92. PubMed ID: 19000616
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Ion-exchange and affinity chromatography costs in alpha-galactosidase purification.
    Porter JE; Ladisch MR
    Biotechnol Bioeng; 1992 Mar; 39(7):717-24. PubMed ID: 18601003
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Modeling the Downstream Processing of Monoclonal Antibodies Reveals Cost Advantages for Continuous Methods for a Broad Range of Manufacturing Scales.
    Hummel J; Pagkaliwangan M; Gjoka X; Davidovits T; Stock R; Ransohoff T; Gantier R; Schofield M
    Biotechnol J; 2019 Feb; 14(2):e1700665. PubMed ID: 29341493
    [TBL] [Abstract][Full Text] [Related]  

  • 96. High-throughput screening of chromatographic separations: III. Monoclonal antibodies on ceramic hydroxyapatite.
    Wensel DL; Kelley BD; Coffman JL
    Biotechnol Bioeng; 2008 Aug; 100(5):839-54. PubMed ID: 18551522
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Predictive chromatographic simulations for the optimization of recovery and aggregate clearance during the capture of monoclonal antibodies.
    Teeters M; Benner T; Bezila D; Shen H; Velayudhan A; Alred P
    J Chromatogr A; 2009 Aug; 1216(33):6134-40. PubMed ID: 19604509
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Accelerated purification process development of monoclonal antibodies for shortening time to clinic. Design and case study of chromatography processes.
    Ishihara T; Kadoya T
    J Chromatogr A; 2007 Dec; 1176(1-2):149-56. PubMed ID: 18035359
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A methodology for the comparative evaluation of alternative bioseparation technologies.
    Tran R; Zhou Y; Lacki KM; Titchener-Hooker NJ
    Biotechnol Prog; 2008; 24(5):1007-25. PubMed ID: 19194909
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Development of a novel adenovirus purification process utilizing selective precipitation of cellular DNA.
    Goerke AR; To BC; Lee AL; Sagar SL; Konz JO
    Biotechnol Bioeng; 2005 Jul; 91(1):12-21. PubMed ID: 15889400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.