These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17887778)

  • 1. Measuring raft size as a function of membrane composition in PC-based systems: Part 1--binary systems.
    Brown AC; Towles KB; Wrenn SP
    Langmuir; 2007 Oct; 23(22):11180-7. PubMed ID: 17887778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring raft size as a function of membrane composition in PC-based systems: Part II--ternary systems.
    Brown AC; Towles KB; Wrenn SP
    Langmuir; 2007 Oct; 23(22):11188-96. PubMed ID: 17887779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature and cholesterol composition-dependent behavior of 1-myristoyl-2-[12-[(5-dimethylamino-1-naphthalenesulfonyl)amino]dodecanoyl]-sn-glycero-3-phosphocholine in 1,2-dimyristoyl-sn-glycero-3-phosphocholine membranes.
    Troup GM; Wrenn SP
    Chem Phys Lipids; 2004 Sep; 131(2):167-82. PubMed ID: 15351269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution mapping of phase behavior in a ternary lipid mixture: do lipid-raft phase boundaries depend on the sample preparation procedure?
    Buboltz JT; Bwalya C; Williams K; Schutzer M
    Langmuir; 2007 Nov; 23(24):11968-71. PubMed ID: 17949025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent probe partitioning in giant unilamellar vesicles of 'lipid raft' mixtures.
    Juhasz J; Davis JH; Sharom FJ
    Biochem J; 2010 Sep; 430(3):415-23. PubMed ID: 20642452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study.
    de Almeida RF; Loura LM; Fedorov A; Prieto M
    J Mol Biol; 2005 Mar; 346(4):1109-20. PubMed ID: 15701521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I.
    Massey JB; Pownall HJ
    Biochemistry; 2005 Aug; 44(30):10423-33. PubMed ID: 16042420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence-quenching and resonance energy transfer studies of lipid microdomains in model and biological membranes.
    Silvius JR; Nabi IR
    Mol Membr Biol; 2006; 23(1):5-16. PubMed ID: 16611577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fluorescent cholesterol analog dehydroergosterol induces liquid-ordered domains in model membranes.
    Garvik O; Benediktson P; Simonsen AC; Ipsen JH; Wüstner D
    Chem Phys Lipids; 2009 Jun; 159(2):114-8. PubMed ID: 19477318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale phase separation in DSPC-cholesterol systems.
    Brown AC; Wrenn SP
    Langmuir; 2013 Aug; 29(31):9832-40. PubMed ID: 23876059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol.
    Feigenson GW; Buboltz JT
    Biophys J; 2001 Jun; 80(6):2775-88. PubMed ID: 11371452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence resonance energy transfer to characterize cholesterol-induced domains.
    Loura LM; Prieto M
    Methods Mol Biol; 2007; 400():489-501. PubMed ID: 17951755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging.
    de Almeida RF; Loura LM; Prieto M
    Chem Phys Lipids; 2009 Feb; 157(2):61-77. PubMed ID: 18723009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined AFM and two-focus SFCS study of raft-exhibiting model membranes.
    Chiantia S; Ries J; Kahya N; Schwille P
    Chemphyschem; 2006 Nov; 7(11):2409-18. PubMed ID: 17051578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase separation is induced by phenothiazine derivatives in phospholipid/sphingomyelin/cholesterol mixtures containing low levels of cholesterol and sphingomyelin.
    Hendrich AB; Michalak K; Wesołowska O
    Biophys Chem; 2007 Oct; 130(1-2):32-40. PubMed ID: 17662517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of cholesterol and ergosterol on membrane dynamics: a fluorescence approach.
    Arora A; Raghuraman H; Chattopadhyay A
    Biochem Biophys Res Commun; 2004 Jun; 318(4):920-6. PubMed ID: 15147960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microdomains in lipid vesicles: structure and distribution assessed by small-angle neutron scattering.
    Vogtt K; Jeworrek C; Garamus VM; Winter R
    J Phys Chem B; 2010 Apr; 114(16):5643-8. PubMed ID: 20369805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of nanosized ordered domains in DOPC/DPPC and DOPC/Ch binary lipid mixture systems of large unilamellar vesicles using a TEMPO quenching method.
    Suga K; Umakoshi H
    Langmuir; 2013 Apr; 29(15):4830-8. PubMed ID: 23506052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Membrane Lipid Composition on the Formation of Lipid Ultrananodomains.
    Pathak P; London E
    Biophys J; 2015 Oct; 109(8):1630-8. PubMed ID: 26488654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative characterization of coexisting phases in DOPC/DPPC/cholesterol mixtures: comparing confocal fluorescence microscopy and deuterium nuclear magnetic resonance.
    Juhasz J; Sharom FJ; Davis JH
    Biochim Biophys Acta; 2009 Dec; 1788(12):2541-52. PubMed ID: 19837045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.