These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 17887836)

  • 1. Preferential attachment during the evolution of a potential energy landscape.
    Massen CP; Doye JP
    J Chem Phys; 2007 Sep; 127(11):114306. PubMed ID: 17887836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the network topology of the energy landscapes of atomic clusters.
    Doye JP; Massen CP
    J Chem Phys; 2005 Feb; 122(8):84105. PubMed ID: 15836018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Power-law distributions for the areas of the basins of attraction on a potential energy landscape.
    Massen CP; Doye JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):037101. PubMed ID: 17500833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential energy and free energy landscapes.
    Wales DJ; Bogdan TV
    J Phys Chem B; 2006 Oct; 110(42):20765-76. PubMed ID: 17048885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network topology of a potential energy landscape: a static scale-free network.
    Doye JP
    Phys Rev Lett; 2002 Jun; 88(23):238701. PubMed ID: 12059405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Putative global minimum structures of Morse clusters as a function of the range of the potential: 161 < or = N < or = 240.
    Feng Y; Cheng L; Liu H
    J Phys Chem A; 2009 Dec; 113(49):13651-5. PubMed ID: 19908881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential energy landscapes for the 2D XY model: minima, transition states, and pathways.
    Mehta D; Hughes C; Schröck M; Wales DJ
    J Chem Phys; 2013 Nov; 139(19):194503. PubMed ID: 24320335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential energy surface and unimolecular dynamics of stretched n-butane.
    Lourderaj U; McAfee JL; Hase WL
    J Chem Phys; 2008 Sep; 129(9):094701. PubMed ID: 19044880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A paradigm for viewing biologic systems as scale-free networks based on energy efficiency: implications for present therapies and the future of evolution.
    Yun AJ; Lee PY; Doux JD
    Med Hypotheses; 2006; 67(3):651-7. PubMed ID: 16580786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale characteristics of the energy landscape in protein-protein interactions.
    O'Toole N; Vakser IA
    Proteins; 2008 Apr; 71(1):144-52. PubMed ID: 17932937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topological description of the aging dynamics in simple glasses.
    Angelani L; Di Leonardo R; Parisi G; Ruocco G
    Phys Rev Lett; 2001 Jul; 87(5):055502. PubMed ID: 11497782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: the potential energy landscape ensemble.
    Wang C; Stratt RM
    J Chem Phys; 2007 Dec; 127(22):224503. PubMed ID: 18081402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saddles in the energy landscape probed by supercooled liquids.
    Angelani L; Di Leonardo R ; Ruocco G; Scala A; Sciortino F
    Phys Rev Lett; 2000 Dec; 85(25):5356-9. PubMed ID: 11135995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A minima hopping study of all-atom protein folding and structure prediction.
    Roy S; Goedecker S; Field MJ; Penev E
    J Phys Chem B; 2009 May; 113(20):7315-21. PubMed ID: 19391598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The free-energy landscape of clusters of attractive hard spheres.
    Meng G; Arkus N; Brenner MP; Manoharan VN
    Science; 2010 Jan; 327(5965):560-3. PubMed ID: 20110500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of vibrational properties during a macromolecule's growth.
    Johari GP; Wen P; Venkateshan K
    J Chem Phys; 2006 Apr; 124(15):154906. PubMed ID: 16674264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of salt bridges on the energy landscape of a model protein.
    Wales DJ; Dewsbury PE
    J Chem Phys; 2004 Nov; 121(20):10284-90. PubMed ID: 15549905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The conformational free energy landscape of beta-D-glucopyranose. Implications for substrate preactivation in beta-glucoside hydrolases.
    Biarnés X; Ardèvol A; Planas A; Rovira C; Laio A; Parrinello M
    J Am Chem Soc; 2007 Sep; 129(35):10686-93. PubMed ID: 17696342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: geodesic pathways through the potential energy landscape.
    Wang C; Stratt RM
    J Chem Phys; 2007 Dec; 127(22):224504. PubMed ID: 18081403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The thermal stability of lattice-energy minima of 5-fluorouracil: metadynamics as an aid to polymorph prediction.
    Karamertzanis PG; Raiteri P; Parrinello M; Leslie M; Price SL
    J Phys Chem B; 2008 Apr; 112(14):4298-308. PubMed ID: 18341322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.