These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

718 related articles for article (PubMed ID: 17887866)

  • 1. Electronic properties of the interface between p-CuI and anatase-phase n-TiO2 single crystal and nanoparticulate surfaces: a photoemission study.
    Kumarasinghe AR; Flavell WR; Thomas AG; Mallick AK; Tsoutsou D; Chatwin C; Rayner S; Kirkham P; Warren S; Patel S; Christian P; O'Brien P; Grätzel M; Hengerer R
    J Chem Phys; 2007 Sep; 127(11):114703. PubMed ID: 17887866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial properties of the nanostructured dye-sensitized solid heterojunction TiO(2)/RuL(2)(NCS)(2)/CuI.
    Karlsson PG; Bolik S; Richter JH; Mahrov B; Johansson EM; Blomquist J; Uvdal P; Rensmo H; Siegbahn H; Sandell A
    J Chem Phys; 2004 Jun; 120(23):11224-32. PubMed ID: 15268152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface electronic states and molecular structure of a triarylamine based hole conductor on rutile TiO2(110).
    Johansson EM; Odelius M; Karlsson PG; Siegbahn H; Sandell A; Rensmo H
    J Chem Phys; 2008 May; 128(18):184709. PubMed ID: 18532838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TiO2 band shift by nitrogen-containing heterocycles in dye-sensitized solar cells: a periodic density functional theory study.
    Kusama H; Orita H; Sugihara H
    Langmuir; 2008 Apr; 24(8):4411-9. PubMed ID: 18331067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N doping of TiO2(110): photoemission and density-functional studies.
    Nambu A; Graciani J; Rodriguez JA; Wu Q; Fujita E; Sanz JF
    J Chem Phys; 2006 Sep; 125(9):094706. PubMed ID: 16965104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional study of the interfacial electron transfer pathway for monolayer-adsorbed InN on the TiO(2) anatase (101) surface.
    Lin JS; Chou WC; Lu SY; Jang GJ; Tseng BR; Li YT
    J Phys Chem B; 2006 Nov; 110(46):23460-6. PubMed ID: 17107198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density functional theory study on the structural and electronic properties of low index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems.
    Beltrán A; Andrés J; Sambrano JR; Longo E
    J Phys Chem A; 2008 Sep; 112(38):8943-52. PubMed ID: 18680263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dye sensitization of single crystal semiconductor electrodes.
    Spitler MT; Parkinson BA
    Acc Chem Res; 2009 Dec; 42(12):2017-29. PubMed ID: 19924998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine adsorption on anatase TiO2(101): a photoemission and NEXAFS spectroscopy study.
    Syres K; Thomas A; Bondino F; Malvestuto M; Grätzel M
    Langmuir; 2010 Sep; 26(18):14548-55. PubMed ID: 20735026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wet electrons at the H2O/TiO2(110) surface.
    Onda K; Li B; Zhao J; Jordan KD; Yang J; Petek H
    Science; 2005 May; 308(5725):1154-8. PubMed ID: 15905397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution photoemission and x-ray absorption spectroscopy of a lepidocrocite-like TiO2 nanosheet on Pt(110) (1 × 2).
    Walle LE; Agnoli S; Svenum IH; Borg A; Artiglia L; Krüger P; Sandell A; Granozzi G
    J Chem Phys; 2011 Aug; 135(5):054706. PubMed ID: 21823725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption-site-dependent electronic structure of catechol on the anatase TiO2(101) surface.
    Li SC; Losovyj Y; Diebold U
    Langmuir; 2011 Jul; 27(14):8600-4. PubMed ID: 21688795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells.
    Li G; Richter CP; Milot RL; Cai L; Schmuttenmaer CA; Crabtree RH; Brudvig GW; Batista VS
    Dalton Trans; 2009 Dec; (45):10078-85. PubMed ID: 19904436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical properties of core-shell TiC-TiO2 nanoparticle films immobilized at ITO electrode surfaces.
    Stott SJ; Mortimer RJ; Dann SE; Oyama M; Marken F
    Phys Chem Chem Phys; 2006 Dec; 8(46):5437-43. PubMed ID: 17119652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structure of methoxy-, bromo-, and nitrobenzene grafted onto Si(111).
    Hunger R; Jaegermann W; Merson A; Shapira Y; Pettenkofer C; Rappich J
    J Phys Chem B; 2006 Aug; 110(31):15432-41. PubMed ID: 16884265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculated structural and electronic interactions of the ruthenium dye N3 with a titanium dioxide nanocrystal.
    Persson P; Lundqvist MJ
    J Phys Chem B; 2005 Jun; 109(24):11918-24. PubMed ID: 16852468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic and chemical properties of tin-doped indium oxide (ITO) surfaces and ITO/ZnPc interfaces studied in-situ by photoelectron spectroscopy.
    Gassenbauer Y; Klein A
    J Phys Chem B; 2006 Mar; 110(10):4793-801. PubMed ID: 16526716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study on the electronic structures of TiO2: Effect of Hartree-Fock exchange.
    Zhang YF; Lin W; Li Y; Ding KN; Li JQ
    J Phys Chem B; 2005 Oct; 109(41):19270-7. PubMed ID: 16853489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoemission, resonant photoemission, and x-ray absorption of a Ru(II) complex adsorbed on rutile TiO2(110) prepared by in situ electrospray deposition.
    Mayor LC; Ben Taylor J; Magnano G; Rienzo A; Satterley CJ; O'Shea JN; Schnadt J
    J Chem Phys; 2008 Sep; 129(11):114701. PubMed ID: 19044974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and photoluminescence of well-dispersible anatase TiO2 nanoparticles.
    Xu J; Li L; Yan Y; Wang H; Wang X; Fu X; Li G
    J Colloid Interface Sci; 2008 Feb; 318(1):29-34. PubMed ID: 17988679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.