These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

926 related articles for article (PubMed ID: 17887873)

  • 1. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.
    Rongy L; Goyal N; Meiburg E; De Wit A
    J Chem Phys; 2007 Sep; 127(11):114710. PubMed ID: 17887873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Buoyancy-driven convection around exothermic autocatalytic chemical fronts traveling horizontally in covered thin solution layers.
    Rongy L; De Wit A
    J Chem Phys; 2009 Nov; 131(18):184701. PubMed ID: 19916617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally.
    Rongy L; Schuszter G; Sinkó Z; Tóth T; Horváth D; Tóth A; De Wit A
    Chaos; 2009 Jun; 19(2):023110. PubMed ID: 19566245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady Marangoni flow traveling with chemical fronts.
    Rongy L; De Wit A
    J Chem Phys; 2006 Apr; 124(16):164705. PubMed ID: 16674155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marangoni-driven convection around exothermic autocatalytic chemical fronts in free-surface solution layers.
    Rongy L; Assemat P; De Wit A
    Chaos; 2012 Sep; 22(3):037106. PubMed ID: 23020497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics due to combined buoyancy- and Marangoni-driven convective flows around autocatalytic fronts.
    Budroni MA; Rongy L; De Wit A
    Phys Chem Chem Phys; 2012 Nov; 14(42):14619-29. PubMed ID: 23032937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the classification of buoyancy-driven chemo-hydrodynamic instabilities of chemical fronts.
    D'Hernoncourt J; Zebib A; De Wit A
    Chaos; 2007 Mar; 17(1):013109. PubMed ID: 17411245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear fingering dynamics of reaction-diffusion acidity fronts: self-similar scaling and influence of differential diffusion.
    Lima D; D'Onofrio A; De Wit A
    J Chem Phys; 2006 Jan; 124(1):14509. PubMed ID: 16409043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nernst-Planck analysis of propagating reaction-diffusion fronts in the aqueous iodate-arsenous acid system.
    Mercer SM; Banks JM; Leaist DG
    Phys Chem Chem Phys; 2007 Oct; 9(40):5457-68. PubMed ID: 17925972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. II. Nonlinear simulations.
    D'Hernoncourt J; Merkin JH; De Wit A
    J Chem Phys; 2009 Mar; 130(11):114503. PubMed ID: 19317541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagating fronts in fluids with solutal feedback.
    Mukherjee S; Paul MR
    Phys Rev E; 2020 Mar; 101(3-1):032214. PubMed ID: 32290010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Marangoni flows on the dynamics of isothermal A + B → C reaction fronts.
    Tiani R; Rongy L
    J Chem Phys; 2016 Sep; 145(12):124701. PubMed ID: 27782642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lock-exchange experiments with an autocatalytic reaction front.
    Bou Malham I; Jarrige N; Martin J; Rakotomalala N; Talon L; Salin D
    J Chem Phys; 2010 Dec; 133(24):244505. PubMed ID: 21198000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convective dynamics of traveling autocatalytic fronts in a modulated gravity field.
    Horváth D; Budroni MA; Bába P; Rongy L; De Wit A; Eckert K; Hauser MJ; Tóth Á
    Phys Chem Chem Phys; 2014 Dec; 16(47):26279-87. PubMed ID: 25362974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solitary Marangoni-driven convective structures in bistable chemical systems.
    Rongy L; De Wit A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046310. PubMed ID: 18517735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. I. Linear stability analysis.
    D'Hernoncourt J; Merkin JH; De Wit A
    J Chem Phys; 2009 Mar; 130(11):114502. PubMed ID: 19317540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rayleigh-Taylor instabilities in reaction-diffusion systems inside Hele-Shaw cell modified by the action of temperature.
    García Casado G; Tofaletti L; Müller D; D'Onofrio A
    J Chem Phys; 2007 Mar; 126(11):114502. PubMed ID: 17381215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plume dynamics in quasi-2D turbulent convection.
    Bizon C; Werne J; Predtechensky AA; Julien K; McCormick WD; Swift JB; Swinney HL
    Chaos; 1997 Mar; 7(1):107-124. PubMed ID: 12779641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulations of a buoyant autocatalytic reaction front in tilted Hele-Shaw cells.
    Jarrige N; Bou Malham I; Martin J; Rakotomalala N; Salin D; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066311. PubMed ID: 20866526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Horizontally propagating three-dimensional chemo-hydrodynamic patterns in the chlorite-tetrathionate reaction.
    Pópity-Tóth É; Horváth D; Tóth Á
    Chaos; 2012 Sep; 22(3):037105. PubMed ID: 23020496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.